Unterstützungstutorium grundlegender Mathematik

Dr. Lena Schend

HEINRICH HEINE
UNIVERSITÄT DÜSSELDORF

Mathematisch-Naturwissenschaftliche Fakultät Institut für Informatik

21. Dezember 2016

Aufgabe Gruppenhomomorphismen

Wir erinnern uns, dass die reellen Zahlen mit der Addition $(\mathbb{R},+)$ eine abelsche Gruppe bilden. Desweiteren sind die reellen Zahlen mit der Multiplikation $(\mathbb{R}_{\neq 0},\cdot)$ eine abelsche Gruppe.

Welche der folgenden Aussagen ist wahr?

- O $f:(\mathbb{R},+)\to (\mathbb{R},+), x\mapsto x^2$ ist ein Gruppenhomomorphismus.
- $\bigcirc \quad f: (\mathbb{R}_{\neq 0}, \cdot) \to (\mathbb{R}_{\neq 0}, \cdot), x \mapsto x^2 \text{ ist ein Gruppenhomomorphismus.}$
- O f ist weder bezüglich $(\mathbb{R},+)$ noch bezüglich $(\mathbb{R}_{\neq 0},\cdot)$ ein Gruppenhomomorphismus.

Aufgabe Rekursive Algorithmen

Gegeben sei der folgende Algorithmus

a) Was berechnet algo(n)? (Mehrfachnennung möglich!)

$$\Box \quad \text{algo}(n) = \begin{cases} \prod_{i=0}^{n-1} (n-i), & n > 0 \\ 0, & \text{sonst} \end{cases} \quad \Box \quad \text{algo}(n) = \begin{cases} \prod_{i=0}^{n-1} (n-i), & n \geq 0 \\ 0, & \text{sonst} \end{cases}$$

$$\Box \quad \text{algo}(n) = \begin{cases} \sum_{i=1}^{n} i, & n > 0 \\ 0, & \text{sonst} \end{cases} \quad \Box \quad \text{algo}(n) = \begin{cases} \prod_{i=1}^{n} i, & n > 0 \\ 0, & \text{sonst} \end{cases}$$

Aufgabe Rekursive Algorithmen

Gegeben sei der folgende Algorithmus

```
1 int algo(int n){
     if(n \le 0){ return 0; }
3
     else{
        i = 1:
5
     if(n=1){ return 1; }
6
7
        else{ return algo(n-i) \cdot n; }
8
```

- b) Wieviele Operationen werden für beliebiges $n \ge 1$ bei einem Durchlauf durchgeführt?
- c) Welche worst-case Laufzeit hat der Algorithmus?
 - 0
- $\Theta(n) \circ \Theta(n\log(n)) \circ \Theta(n^2)$

Aufgabe Rekursive Algorithmen

- a) Es sei die Rekursionsgleichung T(n) = 4T(n/12) + f(n) mit $f(n) \in \Theta(n^3)$ gegeben. Welche der folgenden Aussagen ist wahr?
- $\bigcirc \quad T(n) \in \Theta(n^3) \quad \bigcirc \quad T(n) \in \Theta(n^3 \log(n)) \quad \bigcirc \quad T(n) \in \Theta\left(n^{\log_{12}(4)}\right)$
- b) Es sei die Rekursionsgleichung T(n) = 4T(n/2) + f(n) mit $f(n) \in \Theta(1)$ gegeben. Welche der folgenden Aussagen ist wahr?
 - \circ $T(n) \in \Theta(1)$ \circ $T(n) \in \Theta(\log(n))$ \circ $T(n) \in \Theta(n^2)$
- c) Es sei die Rekursionsgleichung T(n) = 27T(n/3) + f(n). Welche Laufzeit muss f(n) haben, damit $T(n) \in \Theta(n^3)$ gilt?
 - \circ $f(n) \in \Theta(n^3)$ \circ $f(n) \in \Theta(n^2)$ \circ $f(n) \in \Theta(n)$

Aufgabe Vollständige Induktion

Gegeben sei die folgende Aussage:

"Jeder glatte Euro Betrag, der mindestens 8 Euro beträgt, kann ohne Wechselgeld mit Münzen im Wert 3 Euro und 5 Euro beglichen werden."

Welche der folgenden Formalisierungen gibt die obige Aussage exakt wieder?

- $\bigcirc \quad (\forall x \in \mathbb{N})(\exists m, n \in \mathbb{N})[x = 3m + 5n]$
- $\bigcirc \quad (\forall x \in \mathbb{N}_{\geq 8})(\exists m, n \in \mathbb{N}_{\geq 0})[x = 3m + 5n]$
- $\bigcirc \quad (\exists x \in \mathbb{N}_{\geq 7})(\forall m, n \in \mathbb{N})[x = 3m + 5n]$

Aufgabe Vollständige Induktion

Wir zeigen die formalisierte Aussage mit vollständiger Induktion und zwar mit einem Schritt von x nach x+3.

Induktionsanfang: Die ersten drei zugelassenen x sind die Zahlen 8,9,10

- $x = 8 = 3 \cdot 1 + 5 \cdot 1$
- $x = 9 = 3 \cdot 3 + 5 \cdot 0$
- $x = 10 = 3 \cdot 0 + 5 \cdot 2$

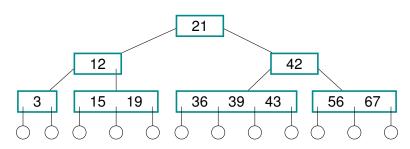
Induktionsvoraussetzung: Wir nehmen an, dass x=3m+5n für $m,n\in\mathbb{N}_{\geq0}$ gilt.

Induktionsschritt: $x \rightarrow x + 3$

Vervollständigen Sie den Beweis!

Aufgabe B-Bäume

Betrachten Sie den folgenden Baum.



Welche Höhe hat der Baum?

h = 3

 \circ h=4

Ist dies ein gültiger B-Baum?

○ Ja.

o Nein.

Aufgabe B-Bäume

Welche Schlüssel müssen getauscht werden, damit der Baum ein gültiger B-Baum ist?

Welche Ordnung hat der nun gültige B-Baum?

- \circ m=3
- \circ m=4
- \circ m=5

Aufgabe Funktionen

Es seien $f: \mathbb{Z}_{>0} \to \mathbb{Z}_{>0}, k \mapsto k^2 - 1$ und $g: \mathbb{R} \to \mathbb{R}, x \mapsto \frac{x}{5} - 2$ zwei Funktionen. Es sei weiterhin $A = \{3, 8, 48, 99\}$.

a) Bestimmen Sie das Bild von A unter f und g.

$$\circ$$
 $f(A) = \{8,36,2302,9800\}$ \circ $g(A) = \{-\frac{7}{5}, -\frac{2}{5}, \frac{38}{5}, \frac{89}{5}\}$

$$\circ \quad f(A) = \{2, 24, 38, 96\} \qquad \quad \circ \quad g(A) = \{\frac{2}{5}, \frac{10}{5}, \frac{20}{5}, \frac{36}{5}\}$$

$$O f(A) = \{8,63,2303,9800\} O g(A) = \{\frac{1}{5},\frac{31}{5},\frac{58}{5},\frac{61}{5}\}$$

b) Bestimmen Sie das Urbild von A unter f und g.

$$\circ$$
 $f^{-1}(A) = \{2,3,8,9\}$ \circ $g^{-1}(A) = \{25,55,250,505\}$

$$\circ$$
 $f^{-1}(A) = \{2,3,7,10\}$ \circ $g^{-1}(A) = \{25,50,255,500\}$

$$\circ$$
 $f^{-1}(A) = \{2,4,6,9\}$ \circ $g^{-1}(A) = \{25,50,250,505\}$