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Chapter 1
| ntroduction

Structural complexity theory isthe study of the structural propertiesof, and the rel ationships
between, complexity classes. Each complexity class collects similarly structured problems
and is represented by a family of algorithms that decide (or accept) the problems in the
class. For example, the class P (which was first perceived in [Cob64, Edm6E5] as the
most sensible formal embodiment of the informal term “feasible” computation) collects all
problems that can be decided by deterministic polynomial-time bounded Turing machines
(DPMs), and NP[Coo71, Lev73] istheclassof all setsthat are accepted by nondeterministic
polynomial-time bounded Turing machines (NPMs).

In terms of their underlying families of algorithms, complexity classes embody vari-
ous computational paradigms such as probabilistic computation, alternating computation,
counting-based computation, unambiguous computation, etc. In many cases, such compu-
tational paradigms can be formalized by appropriate modifications of the nondeterministic
acceptance mechanism. That is, given an NPM running on some problem instance asinput,
the machine may decide on each of its computation paths whether the input is accepted or
rejected onthat path, yet we decide, looking at thewholetree of al paths of thiscomputation,
whether or not the machine accepts itsinput. In thisway, a certain acceptance behavior of
NPMsisfixed. For example, probabilistic polynomial-time Turing machines[Gil 77, Sim75]
may be viewed as NPMs that accept an input if and only if more than half of its paths ac-
cept. Alternating polynomial-time Turing machines [CKS81] characterize (for a fixed
number of alternations) the levels of the polynomial hierarchy PH [MS72, Sto77] and (for
an unbounded number of alternations) the class of sets decidable in polynomia space.

1



2 Chapter 1. Introduction

The levels of the Boolean hierarchy over NP are computationally formalized by machines
with an appropriate (so-called “chain-respecting”’) acceptance type [Wec85, GW86]. Fi-
nally, a rich spectrum of complexity classes is based on counting the accepting paths of
NPMs[Va 79, Hem87, GW86, GW87, Wag86, Tor88, Tod91, FFK94].

Unambiguous polynomial time [Val76], denoted by UPR, is defined via NPMs that on
no input have more than one accepting computation path. FewP [All86] is the class
of sets that are accepted by NPMs that on no input have more than polynomially many
accepting computations. Clearly, P C UP C FewP C NP. Classes such as UP and FewP
are called promise classes, since their machines (having both an acceptance criterion and
a regjection criterion that is more restrictive than the logical negation of the acceptance
criterion) “promise” that on all inputs exactly one of the two criteria holds and all known
acceptance/regjection criteriafor the class also share the property that the rejection criterion
is more restrictive than the logical negation of the acceptance criterion. Promise classes
are the main focus of attention in this thesis. In particular, we study to what extent, if
any, resultsfor the thoroughly investigated non-promise class NP carry over to the promise
classes UP and FewP.

The study of UPiscrucial in both cryptography and structural complexity theory. There
has been along line of research regarding UP [Val 76, Rac82, GS88, HH88, HH91, Wat88,
Wat91]. To pinpoint some of the most important resultsabout UP, we mention thefollowing.
Grollmann and Selman [GS88] have shown that “one-way functions’ exist if and only if
P # UP. (Informally speaking, a one-way function is one that is easy to compute but hard
to invert.) It is not known whether UP has complete sets. Hartmanis and Hemachandra
prove there exists an oracle A such that UP* has no complete set, and there exists an
oracle B such that P® £ UP® £ NP® and yet UP? does have complete sets [HH88]. They
also provide unrelativized evidence that UP is unlikely to have complete sets: if UP has
complete sets, then it has complete sets of theform SAT N A, where A isaset in Pand SAT
is the satisfiability problem (i.e., “Given a Boolean formula f, is f satisfiable?’) [HH88].
Regarding FewP, Allender and Rubinstein [AR88] provethat P # FewP if and only if there
exist sparse sets in P that are not P-printable [HY84],! a notion arising in the study of
generalized Kolmogorov complexity and data compression.

1A set S issparseif thereisapolynomial p such that for each lengthn, there are at most p(n) elements of
lengthat mostninS. A set S isP-printableif thereisaDPM M such that for each lengthn, M oninput 1™
prints all elementsof S having length at most n.
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Chapter 2 givesthe notationsto be used in thisthesis. The definitions of the complexity
classesconsidered in thiswork are briefly reviewed and sometechnical pointsare discussed.

In Chapter 3 and Chapter 4, we study, for the promise classes UP and FewP, some
topics that have been intensely studied for NP: Boolean hierarchies, the consequences of
the existence of sparse Turing-complete sets, and upward separation. Unfortunately, asis
often the case, the resultsfor NP draw on special properties of NP that do not seem to carry
over straightforwardly to UP or FewP. For example, NP is easily seen to be closed both
under union and intersection, whereas UPis closed under intersection but isnot knownto be
closed under union. Also, NP has complete sets (SAT being the most prominent example),
whereas neither UP nor FewP are known to have compl ete sets.

For the Boolean hierarchy over NP (and more generally over any class containing Z*
and () and closed under union and intersection), alarge number of definitionsareknownto be
equivalent. For example, for NP, all the following coincide [CGH* 88, CGH*89, KSW87]:
the Boolean closure of NP, the Boolean (alternating sums) hierarchy, the nested difference
hierarchy, the Hausdorff hierarchy, and the symmetric difference hierarchy. In Section 3.2,
we prove that for the symmetric difference hierarchy and the Boolean hierarchy, closure
under unionisnot needed for thisclaim: For any class K that contains Z* and () and isclosed
under intersection (such as UP), the symmetric difference hierarchy over /C, the Boolean
hierarchy over K, and the Boolean closure of /C all are equal. On the other hand, we show
that in the UP case the remaining two hierarchies—the Hausdorff hierarchy over UP and
the nested difference hierarchy over UP—fail to be equal to the Boolean closure of UP in
some relativized worlds. In fact, the failure is relatively severe; we provide relativizations
for which even low levels of other Boolean hierarchies over UP—the third level of the
symmetric difference hierarchy and the fourth level of the Boolean (aternating sums)
hierarchy—fail to be captured by either the Hausdorff hierarchy or the nested difference
hierarchy.

The question of whether there exist sparse Turing-complete or Turing-hard sets for NP
has been carefully investigated in the literature [KL80, Hop81, KS85, BBS86a, Sch86,
Kad89] (for reductions lessflexible than Turing reductions, thisissue has been studied even
more intensely; see, e.g., the surveys [You92, HOW92]). The results obtained show that
NP has no sparse Turing-complete or Turing-hard sets unless certain complexity-theoretic
consequences hold that are considered to be unlikely. For instance, Karp and Lipton
prove that if there exist sparse Turing-hard sets for NP, then the polynomia hierarchy
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collapsesto its second level [KL80]. Kadin shows that the assumption of the existence of
a sparse Turing-complete set in NP implies an even stronger collapse of the polynomial
hierarchy [Kad89]. Due to the promise nature of UP (in particular, UP probably lacks
completesets[HH88]), Kadin'sproof doesnot seemto apply to UP. In Section 3.3, weprove
that if UP has sparse Turing-compl ete sets, then the levels of the unambiguous polynomial
hierarchy (an unambiguous analog [NR93] of the polynomial hierarchy) are simpler than
one would otherwise expect: they “dip down” one level in terms of their location in
the promise unambiguous polynomial hierarchy (a promise analog of the unambiguous
polynomial hierarchy first defined in [NR93, p. 483]). Using the result of Karp and Lipton,
we obtain related results under the weaker assumption that UP has sparse Turing-hard
sets. In particular, under this assumption, UP is contained in the second level of the low
hierarchy [Sch83].

Chapter 4 studies the application domain of the upward separation technique that has
been introduced by Hartmanis to relate certain structural properties of polynomial-time
complexity classes to their exponential-time analogs and was first applied to NP [Har83].
Later work revealed the limitations of the technique and identified classes defying upward
separation. In particular, it is known that coNP as well as certain promise classes such as
BPP, R, and ZPP do not possess upward separation in all relativized worlds [HIS85, HIJ93],
and it had been suspected [All91] that this was also the case for other promise classes
such as UP and FewP. We refute this conjecture for the FewP case by proving that FewP
does display upward separation, thus providing the first upward separation result for a
promise class. In fact, this follows from a more general result the proof of which heavily
draws on Buhrman, E. Hemaspaandra, and Longpré's recently discovered tally encoding of
sparse sets[BHL]. As consequences of our main result, we obtain upward separations for
various counting classes such as &P, coGP, SPP, and LWPP (see Chapter 2 for the precise
definitions of these classes). Some applications and open problems are also discussed.

Theinvestigationsin Section 3.4 are motivated by the open question (raised by Todaand
Ogiwarain[T0O92]) of whether any set in PH randomly reducesto asetintheclassSPP. This
guestionisreformulatedinthedifferent context of promise problems, whichwereintroduced
by Even, Selman, and Yacobi [EY 80, ESY 84] in the theory of public-key cryptosystems.
Informally, their framework for promise problems relaxes the strict requirement (which
applies to the promise classes UP, FewP, or SPP considered above) that some promise-
breaking input for amachine M immediately invalidates M’s ability to represent the class:
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promise-breaking inputs to an agorithm solving a promise problem are alowed; if the
promise is not met for some input, however, the algorithm may return an incorrect answer
and is thus not reliable. We introduce an analog of SPP in this setting, denoted by SPP,
and provethat SPP indeed is hard for the polynomial hierarchy w.r.t. random reductions,
thus generalizing the corresponding result of Valiant and Vazirani for NP [VV86] to all
of PH. The origina question of Toda and Ogiwara, however, remains unresolved.

Finally, in Chapter 5, we turn to the concept of selectivity in complexity theory. Selman
introduced the P-selective sets [Sel 79] as the complexity-theoretic analogs of Jockusch’'s
semi-recursive sets [Joc68]. Informally, a set is P-selective if there is a polynomial-time
computable function (called a P-selector) that, given any two inputs, outputs one that is
logically no less likely to be in the set than the other. In this way, a P-selector performs a
“semi-decision” for its set. There are several generalizations of P-selectivity: Ko's “weak
P-selectivity” [Ko83], Amir, Beigel, and Gasarch’s" non-p-supertersesets’ [ABG90] (called
“approximablesets’ in[BKS94]), and Ogihara’s* polynomial -time membership comparable
sets’ [Ogi94]. In Chapter 5, we introduce a generalization of P-selectivity that is based on
the “promise ided’ in the sense that if a certain promise is not satisfied, then the selector
may output an arbitrary subset of the inputs. Depending on parameters that quantify the
“amount of promise,” we obtain aselectivity hierarchy, denoted by SH, which we provedoes
not collapse. In Section 5.2, we study the internal structure and the properties of SH and
completely establish, in terms of incomparability and strict inclusion, the relations between
our generalized selectivity classes and Ogihara’s classes of polynomial-time membership
comparablesets. Although SH isastrict hierarchy, we show that the core resultsholding for
the P-selective sets, and proving them structurally simply, also hold for SH. In particular,
al setsin SH have small circuits;, the NP setsin SH are in Lows, the second level of the
low hierarchy within NP [Sch83]; and SAT cannot bein SH unlessP = NP.

Though the P-selective sets are in EL,, the second level of the extended low hierar-
chy [BBS86b], we prove in Section 5.3 that not all sparse setsin SH arein EL,. This
is the strongest known EL, lower bound, strengthening the result that P/poly, and indeed
SPARSE, is not contained in EL, [AH92]. Relatedly, we prove that the join of sets may
actually be simpler than the sets themselves. there exist sets that are not in EL,, yet their
joinisinEL,. Thatis, intermsof extended |lowness, thejoin operator can lower complexity.
We also provethat EL; isnot closed under union or intersection.

Finaly, it is known that the P-selective sets are not closed under union or intersec-
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tion [HJ]. However, in Section 5.4, we provide an extended selectivity hierarchy that is
based on SH and is large enough to capture those closures of the P-selective sets, and yet,
in contrast with the P-mc classes, is refined enough to distinguish them.

The results of the fourth section of Chapter 3 have been presented at the Sixth Inter-
national Conference on Computing and Information (ICCI’94) [Rot95] in Peterborough,
Ontario, and the results of the second section of Chapter 3 have been presented at the First
Annual Inter national Computing and Combinatorics Conference (COCOON'’ 95) [HR95] in
Xi’an, China. Thefirst three sections of Chapter 3 will appear in S AM Journal on Comput-
ing [HR]. Chapter 4 has been published in Information Processing Letters [RRW94], and
the results of Chapter 5 have been submitted for publication (atechnical report is available
as[HIRW95]).



Chapter 2
Notations

In this chapter, we fix notations and introduce basi ¢ concepts and definitions. In general, we
adopt the standard notations of Hopcroft and Ullman [HU79]. We assume that the reader
isfamiliar with the basic concepts of structural complexity theory.

2.1 Strings, Sets, Functions, and Boolean Oper ations

Fix the aphabet £ = {0,1}. We consider sets (sometimes called languages) of strings
over X. I* isthe set of al strings over L. For each string x € X*, x| denotes the length
of x. Fork > 1 and any string x, let x< £ x - x<2, wherex° < ¢ isthe empty string and -
denotesthe concatenation of strings. 3(X*) isthe classof al setsof stringsover X. For any
set L C I, ||L|| represents the cardinality of L, and L & 5+ — L denotes the complement
of LinZ*. L= (L=") isthe set of all stringsin L having length n (less than or equal to 1).
Let I™ and =™ be shorthands for (Z*)=™ and (X*)<™, respectively. Let Z (IN and IN,
respectively) denote the set of integers (non-negative integers and positive integers). IPol is
the set of all polynomialsover IN in one variable. For any function f from IN into IN, define
O(f) astheset of al functions g from IN into IN such that for somereal constant r > 0 and
for al but finitely many n, g(n) < r- f(n). For any real number r, let [r] (| r]) denote the
least (largest) integer > r (< 7).

For sets A and B, their join, A® B, is{Ox | x € A}U{1x|x € B}, and the Boolean opera-
tions symmetric difference (also called exclusive-or) and nxor (also called equivalence) are
defined as AAB L (ANB)U (AN B) and AAB L (ANB)U(ANB). Forany class K,

7



8 Chapter 2. Notations

define cokc £ {L|L € K} (which occasionally is denoted “co - ), and let BC(K) denote
the Boolean algebra generated by /C, i.e., the smallest class containing X and closed under
all Boolean operations. For classesC and D of sets, define

CAD = {ANB|Ae€CABeD}, CAD = {AAB|A €CABeDj
CVD = [AUB|JA€CABeD}, CAD = {AAB|Ae€CABEeD}
CeD = {A®B|AeCABeD}, C—D = {A—B|Ae€CABEeD}

For k sets A4,..., Ay, thejoin extendsto A1 @ --- @ Ay g Uicicldix|x € Ay, where
i is the bit pattern of [logk] bits representing i in binary (and the logarithm is base 2).
We write ®,(C) L {A1 @ - @ Al (Vi: 1< 1i<Kk)I[A; €Cll. Similarly, we use the
shorthands A\ (C) and Vi (C) in an analogous way.

For any set L, let x. denote the characteristic functionof L, i.e, x (w) =1ifw € L,
and xr(w) = 0if w & L. The census function of L is defined by census, (0™) a |IL=™].
A set L is said to be d-sparse (or of density d) if d is a function such that for any n,
census; (0") < d(m); cal L sparse if L is d-sparse for some d € IPol. Let SPARSE
denote the class of all sparse sets. A set T is said to be tally if T € 0*. To encode
a pair of strings, we use a polynomial-time computable, one-one, onto pairing function,
(-,-) : Z* x I* — X*, that has polynomial-time computableinverses; thisnotion is extended
to encode every m-tuple of strings, in the standard way. We simply write f(xq,... ,Xm)
instead of f((xy,...,%m))—we won't consider any functions on (X*)™, m > 1, so this
causes no problems. Using the standard correspondence between X* and IN, we will view
(-,-) dso as a pairing function mapping IN x IN onto IN. Let <, denote the standard
guasi-lexicographical ordering on Z*, i.e., for stringsx and y, x <, y if either x =y, or
Ix| < [yl, or (x| = ly| and there exists some z € £* such that x = zO0u andy = z1v). If
x <jex Y DUt x # y, wewrite x < y.

2.2 Machinesand Reducibilities

Our model of computation is the (multi-tape) Turing machine (see [HU79, Chapter 7]). A
Turing machine (TM, for short) can work deterministically (DTM) or nondeterministically
(NTM). Although all NTMs considered in this thesis are acceptors, a DTM may be either
an acceptor or atransducer. A transducerisaDTM that computesfunctionsfrom Z* into X*
(rather than accepting sets of strings), where the function value computed is written on an
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output tape. We also consider (deterministic and nondeterministic) oracle TMs—as this
notion is standard, we refer for detailsto the literature [BGS75] [HU79, Chapter 8].

In complexity theory, one is interested in the computational power of TMs having
bounds imposed on their computational resources (such as time, space, etc.). Thisthesis
focuses on the time complexity of TMsonly, and we denote by DTIME[t(n)] (respectively,
NTIME[t(n)]) the class of all sets accepted by some t(n)-timebounded DTM (NTM). As
is standard, E will denote | J,..,DTIME[2°"], and NE will denote | J_,NTIME[2°"].

Wewill abbreviate polyn_omi a-time deterministic (nondetermi nisti ¢) Turing machine”
by DPM (NPM ). An unambiguous (sometimes called categorical) polynomial-time Turing
machine (UPM) is an NPM that on no input has more than one accepting computation
path [Val 76]. For the respective oracle machineswe use the shorthands DPOM, NPOM, and
UPOM. Note, crucialy, that whether amachineis categorical or not depends on its oracle.
Infact, it iswell known that machinesthat are categorical with respect to all oracles accept
only easy languages [HH90] and create a polynomial hierarchy® analog that is completely
contained in alow level of the polynomial hierarchy (Allender and Hemaspaandra as cited
in[HR92]). Thus, when we speak of a UPOM, we will simply mean an NPOM that, with
the oracle the machine has in the context being discussed, happensto be categorical.

For any TM M, L(M) denotesthe set of strings accepted by M, and the notation M (x)
means“M oninput x.” For any oracle TM M and any oracle set A, L(M*) denotes the set
of strings accepted by M relativeto A, and the notation M” (x) means “M# on input x.”
Without loss of generality, we assume each NPM and NPOM (in our standard enumeration
of such machines) M has the property that for every n, thereis an integer £,, such that, for
every x of lengthn, every path of M(x) isof length £,, and all paths of length £,, exist in the
computation of M(x), and furthermore, in the case of oracle TMs, that £,, isindependent of
the oracle. NPMs meeting these requirements are said to be normalized. Unless otherwise
stated, all NPMs considered in this thesis are required to be normalized.

FP denotes the class of functions computed by polynomial-time transducers. Let A
and B be sets. A ismany-onereducibleto B (denoted by A <P B) if and only if thereisan
FPfunction f suchthat A = {x|f(x) € B}. A isTuringreducibleto B (denotedby A <} B
or A € P?) if and only if there isa DPOM M such that A = L(MEB). A is truth-table
reducible to B (denoted by A <P, B) if A <} B viaaDPOM M satisfying that for each
input x, al oracle queries are asked in a “nonadaptive” manner, i.e., M(x) first computes

1The polynomial hierarchy is defined in Definition 2.3.4 on page 12.
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alist of al queries qq, ..., qx, Where k € FP depends on x, and a k-ary truth-table «,
and accepts x if and only if «(xg(q1),...,xs(qx)) evauatesto true. For the definition
of specia truth-table reductions such as bounded truth-table reductions, conjunctive or
digunctive truth-table reductions, werefer to [LLS75]. Other reducibilitieswill be defined
later in this thesis. Define () L {L|(3C e ¢) [L <! CJ} for any class C and for any T
and t for which thereducibility <t isdefined. C issaid to be closed under <t if R:(C) C C.
A set B is Turing-hard for a complexity class C if foral A € C, A <} B. Aset B is
Turing-completefor C if B is Turing-hardfor C and B € C.

2.3 Complexity Classesand Operators

P (respectively, NP) is the class of al sets that are accepted by some DPM (NPM). Many
interesting polynomial -time compl exity classes reflecting various computational paradigms
such as unambiguous computation, probabilistic computation, etc. can be defined in terms
of NPMs whose particular acceptance mode corresponds to the respective paradigm. For
instance, UP [Val76] (unambiguous polynomial time) is defined to be the class of al sets
that are accepted by some UPM. More generaly, in order to refer to some NPM (or
NPOM) whose specific mode of acceptance defines a class C (or the relativized version
of C), we shall use the term “C machine” (“C oracle machine”). C® denotesthe class of all
sets that are accepted by some C oracle machine accessing an oracle set from B. As such
modifications of the acceptance behavior of NPMs are usually related to the number of
accepting (or to the number of accepting and rejecting) computation paths, we will below
define some of the complexity classes of interest to usin thiswork via#P functions[Val 79]
and GapP functions [FFK91, Gup91]. Moreover, we seize this opportunity to introduce the
common operator notation, which will sometimes beused asan alternativeto machine-based
notations.

Definition 2.3.1  Let K beany class of sets, and let f be afunction from £* into Z.

1. f € NUM - K if and only if
(3A € K) (3p € IPol) (¥x) [f(x) = [[{y | (x, y) € A A [yl = p(Ix])[I.
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2. f € GAP- K if andonly if (3A € K) (3p € IPal) (vx)
[f(x) = 2([{y | (¢, u) € A A Jul =p(xDH — [{ul (x,u) € A A lul =p(IxD}])].2

3. 3- KL (3feNUM - K) [L = {x]|f(x) > O}
4.V-K<Lco-3-co- K.

5. C-KL{1L|(3f € GAP-K)[L = {x|f(x) > O]l

6. &KL |(3f € GAP- L) [L = [x|f(x) = O}]).

7. @ K L{L|(3f € GAP- K) [L = {x|f(x) = 0(mod 2)}]}.
8. SP- K L (L|(3f € GAP- K) (vw) [x.(w) = f(w)]}.

9.BP £ £ {L\ (3A € K) (3p € IPol) (vw) [Prygu x| xc (W) = xa(w,x)] > %]}-3

10. RP- &

{L

11. ZP- K L RP. K N co(RP- K).

xelL = Pryplul(x,y) € A] >

3
(3A € X) (5 € Pol) (vx) x¢L = F’fpuxn[yl(x,y)EA]:S] }

Remark 2.3.2 1. Clearly, NUM - P =#P ([Va 79]; the NUM operator was first defined
in [Tod91]) and GAP - P = GapP [FFK91]. GapP is the closure of #P under
subtraction.

2. For K = P, we obtain in Parts 3 to 11 of Definition 2.3.1 above the classes NP,
coNP, PP [Sim75, Gil77], GP [Sim75, Wag86], &P [PZ83, GP86], SPP ([FFK91],
independently definedin [OH90], whereit wascalled XP), BPP, R, and ZPP ([Gil 77];
the class R was called VPP in Gill’swork). Note that SPPis the “gap analog” of UPR,
and PP can similarly be viewed as the “gap analog” of NP.

2The factor % isrequired to keep f from having even values only, since this would be rather an unnatural
property. Thisreguirement isjust atechnical one and doesn’t cause any loss of generality.

3For a predicate Q over strings, let Pr,,, [w|Q(w)] d [{w|Q(w)}|| - 2=™ denote the probability that
Q(w) istrue, wherew € X™ ischosen at random under the uniform distribution.
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3. Asnotedin[Gup93], the classes co(RP- K) and (coRP) - K, where thel atter is defined

as
{L } )

probably differ if the class K is not closed under complementation. In particular,
(coRP) - GP = GP, whereasit is not known whether co - (RP - GP) isequal to CP.

x ¢ L = Proplul(x,uy) & Al
xel = Pr'p(\x\][y | <X)y> € A]

vV
= Mw

(3A € K) (Fp € IPal) (Vx)

4. Polynomial-time bounded operators such as those defined above, which yield some
class C when applied to P, formalize a generalized type of many-one reducibil-
ity <¢ . For example, the “polynomial-time bounded exist quantifier” [MS72, Sto77]
expresses the polynomial-time nondeterministic many-one reducibility, <N, in the
sense that R\P(K) = 3 - K; the polynomial-time randomized many-one reducibility
with bounded error, <B™, is formalized by the BP operator [Sch89, Tod91], i.e.,

=m

REPP(K) = BP- K; etc.

Definition 2.3.3 [KL80] P/poly denotes the class of sets L for which there exist a set
A € P and apolynomialy length-bounded function h : £* — X* such that for every x, it
holdsthat x € L if and only if (x, h(0*)) € A.

Definition 2.3.4  The polynomial hierarchy [MS72, Sto77] is defined as follows:
55 S P, AL E P, 1P £ NPy, T £ coxf, AP £ P, k> 1, and PH £ 0 25

Definition 235 1. [Sch83] For eachk > 1, define Low;, L {L € NP| £P'L = 5P},

2. [BBSB6b, LS94]  For each k > 2, define ELy < {L|£P" = £P 3T and for
L p,SATGL
1

eachk > 3, define ELO, £ {1 |p=k Dlogn] ¢ plER3"®Nllegnly The[logn] indicates
that at most O(logn) queries are made to the oracle.

Moregenerally, aset L issaid to below for a(relativized) complexity class C if C- = C,
i.e., L does not provide C with any additional computational power when used as oracle
by C oracle machines. Call aclass £ of setslow for C if C* = C holdsforeachset L € L.
A class C issaid to be self-lowif C¢ =C.



2.4. Promise Classes 13
2.4 Promise Classes

Some of the above-defined complexity classes (UP, SPP, BPP, R, ZPP, and NP coNP) are
defined by machineswith both an acceptance criterion and arejection criterion (that ismore
restrictive than the logical negation of the acceptance criterion), along with a “promise”
that on all inputs exactly one of the two criteria holds (and all known acceptance/rejection
criteria for the class also share the property that the rejection criterion is more restrictive
than thelogical negation of the acceptance criterion). Asisstandard (at least since[HR92]),
we will refer to those classes as “promise classes’ in this thesis.* Another example of a
promise classis the class FewP, which was first defined in [AlI86]:

FewP < (L | (3f € #P) (3q € IPol) [(vx) [f(x) < q(Ix])] A L={x|f(x) > O}]}.

This definition straightforwardly extends to the definition of the FEw operator applied to
any class of sets KC:

FEW - I g{LI (3f € NUM - K) (3q € IPal) [(Vx) [f(x) < q([x])] A L={x]|f(x) > 0}]}.

Fenner, Fortnow, and Kurtz [FFK91] introduced the promise class LWPP as a general-
ization of SPP:

Lwep & {L|(3f € GapP) (3g € FP, g : IN — IN') (Vw) [g(Iw]) - xr(w) = f(w)]}.

A different concept of promise problems was introduced by Even, Selman, and Yacobi
in the theory of public-key cryptosystems. To distinguish between the notions, we will
refer to collections of promise problems defined in the sense of Even, Selman, and Yacobi
as “classes of promise problems’ in this thesis, reserving the term “promise class’ for
collections of decision problems in the above sense. The term “promise problem” will be
used exclusively for members of classes of promise problems, while elements of promise
classesarecalled sets. Even, Selman, and Yacobi [EY 80, ESY 84] define apromise problem

41t has been shown in [HHT93] that the “promise” in the definition of Ry, the analog of R in the model
of threshold computation [Sim75], isatrivial one, i.e., Ry equals NP and is thus not a promise classin our
sense. Theproof that Ry« = NP essentially restsonthefact that threshold machines need not be normalizedin
general. Since we exclusively consider normalized NTMsin thisthesis, the informal explanation of promise
classes given above suffices.
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to be a partial decision problem having the structure

input x
promise Q(x)
property R(x)

where Q and R are (recursive) predicates® That is, on input x, an algorithm solving a
promise problem (Q, R) hasto correctly decide property R(x) if the promise Q(x) is met;
otherwise, it can give an incorrect answer. More formally, aset S is said to be a solution to
(QR)iIf (Vx € X*)[x e Q = (x € R & x € §)]. Let s0Ins(Q, R) denote the set of
all solutions to the promise problem (Q, R). Note that every set of the form (Q N R) U X,
where X C Q, isasolutionof (Q, R). Inparticular, R istheuniquesolutionto (I*, R); thus,
the promise problem (Z*, R) may be identified with the decision problem R. For notational
convenience, we will write D C P for any class D of decision problemsand any class P of
promise problemsif for each set L. € D the corresponding promise problem (Z*, L) isin P.

For example, (1SAT, SAT) is a well-known and intensely studied promise problem
(see, e.g., [CHVI3, KST92, VV 86, Wat92] and the references given therein), where

SAT ¥ (f|Boolean formulaf is satisfiablel,

1sAT7 £ {f| Boolean formula f has at most one satisfying assignment}.
(1SAT, SAT) isclosealy related to the class of promise problems 4P (“promise UP”), which
is defined as:

uP L{(Q,R)|(3f e #P) [Q = (x| f(x) € {0, 1)} A R = {x]| f(x) = 1]I}.

This definition of UP is equivalent to the one given in [CHV93]. Watanabe [Wat92] de-
finesa similar notion: A promise problem (Q, R) is unambiguous if there exist a solution
X in NP and an NPM M accepting X that is unambiguous on Q. As noted by Hemas-
paandra [Hem94], these two notions are subtly different, since (HALTINGPROBLEM, X*)
IS an unambiguous promise problem in Watanabe's setting (as it has the solution £* and
the (deterministic) polynomial-time Turing machine accepting X* never has more than one
accepting path), yet (HALTINGPROBLEM, £*) ¢ UP (asthereisno NPM that has at most
one accepting path exactly on the HALTINGPROBLEM).

SWe will identify predicates and sets, i.e., for apredicate A over strings, we will use A also to denote the
set {x | A(x) istrue}, and conversely, set A isidentified with the predicate x A .
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Below we define the “gap analog” of UP, denoted SPP (“promise SPP’), by intro-
ducing the promise operator SP, which yields a class of promise problems when applied
to aclass of decision problems. In particular, SPP = SP - P.

Definition 2.4.1  Let K beany class of sets.

SP-KZ{(Q,R)|(3f € GAP- K)[Q = (x| f(x) € {0, 1} A R ={x| f(x) = 1}]}.
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Chapter 3

Unambiguous Computation: Boolean
Hierarchiesand Sparse
Turing-Complete Sets

3.1 Introduction

NP and NP-based hierarchies—such as the polynomial hierarchy [MS72, Sto77] and the
Boolean hierarchy over NP [CGH*88, CGH*89]—have played such a centra role in
complexity theory, and have been so thoroughly investigated, that it would be natural to
take them as predictors of the behavior of other classes or hierarchies. However, over and
over during the past decade it has been shown that NP is a singularly poor predictor of
the behavior of other classes (and, to a lesser extent, that hierarchies built on NP are poor
predictors of the behavior of other hierarchies).

As examples regarding hierarchies: though the polynomial hierarchy possesses down-
ward separation (that is, if itslow levelscollapse, then all itslevelscollapse) [MS72, Sto77],
downward separation does not hold “robustly” (i.e., in every relativized world) for the ex-
ponential time hierarchy [HIS85, IT89] or for limited-nondeterminism hierarchies ([HJ93],
see dso [BGY4]). As examples regarding UP: NP has <P -complete sets, but UP does
not robustly possess <P -complete sets [HH88] or even <%-complete sets [HIV9I3]; NP
positively relativizes, in the sense that it collapsesto Pif and only if it does so with respect
to every taly oracle ([LS86], see also [BBS864d]), but UP does not robustly positively rela-

17



18 Chapter 3. UP: Boolean Hierarchies and Sparse Turing-Complete Sets

tivize[HR92]; NP has* constructive programming systems,” but UP does not robustly have
such systems [Reg89]; NP (actually, nondeterministic computation) admits time hierarchy
theorems[HS65], but it isan open question whether unambiguous computation has nontriv-
ial time hierarchy theorems; NP displays upward separation (that is, NP— P contains sparse
sets if and only if NE # E) [HIS85], but it is not known whether UP does (see [HJ93],
which shows that R and BPP do not robustly display upward separation, and Chapter 4,
which shows that FewP and several related classes do possess upward separation).

In light of the above list of the many ways in which NP parts company with UP, it is
clear that we should not merely assume that resultsfor NP hold for UP, but, rather, we must
carefully check to seeto what extent, if any, resultsfor NP suggest resultsfor UP. Inthefirst
two sections of this chapter, we study, for UP, two topics that have been intensely studied
for the NP case: the structure of Boolean hierarchies, and the effects of the existence of
sparse Turing-complete/Turing-hard sets.

For the Boolean hierarchy over NP[CGH*88, CGH*89], alarge number of definitions
are known to be equivalent. For example, for NP, all the following coincide [CGH*88]:
the Boolean closure of NP, the Boolean (alternating sums) hierarchy, the nested differ-
ence hierarchy, and the Hausdorff hierarchy. The symmetric difference hierarchy also
characterizes the Boolean closure of NP [KSW87]. In fact, these equalities are known
to hold for all classes that contain £* and () and are closed under union and intersec-
tion[Haul4, CGH*88, KSW87,BBJ"89]. In Section 3.2, we provethat both the symmetric
difference hierarchy (SDH) and the Boolean hierarchy (CH) remain equal to the Boolean
closure (BC) even in the absence of the assumption of closure under union. That is, for
any class K containing Z* and () and closed under intersection (e.g., UP, US [BG82], and
DP[PY84]): SDH(K) = CH(K) = BC(K). However, for the remaining two hierarchies,
we show that not all classes containing £* and () and closed under intersection robustly
display equality. In particular, the Hausdorff hierarchy over UP and the nested difference
hierarchy over UP both fail to capture the Boolean closure of UP in somerelativized worlds.
In fact, the failure is relatively severe; we show that even low levels of other Boolean hi-
erarchies over UP—the third level of the symmetric difference hierarchy and the fourth
level of the Boolean (alternating sums) hierarchy—fail to be robustly captured by either the
Hausdorff hierarchy or the nested difference hierarchy.

The investigations in Sections 3.3 and 3.4 are motivated by certain open problems
regarding the classes UP and SPP, where, informally speaking, the promise-like definition



3.1. Introduction 19

of UP and SPP seems to be responsible for the difficulty of the origina problem in either
case. If some problem appears hard to solve in the context in which it naturally arose,
one often tries to reformulate it in another context to tackle it under new conditions. If
this happens to succeed, one might then, in light of these new insights, return to deal

with the original issue. For example, after each attempt to solve the famous P 2 NP
problem (one way or the other) had failed, Baker, Gill, and Solovay settled it relative
to an oracle (surprisingly, in both ways) [BGS75], thereby creating an extremely fruitful
branch of complexity theory. As another example, though it is still unknown whether or
not SAT is Turing-reducible to some set in P (which, due to P*F = ¢P®° = P [PZ83],
is equivalent to the containment question “NP C @P?’), Valiant and Vazirani raised and
settled the reduction question in the context of randomized reductions by showing that each
NP set is polynomial-time randomized many-one reducibleto aset in ®P [VV86] (in fact,
they even prove atechnically stronger result that will be discussed in Part 2 of Remark 3.4.2
on page 42). It is worth noting that, in a certain contrast to their result, Toran constructed
an oracle relative to which the containment NP C &P does not hold [Tor88].

It is well-known, thanks to the work of Karp and Lipton ([KL80], see also the related
references given in Section 3.3), that if NP has sparse Turing-hard (or Turing-complete)
sets, then the polynomial hierarchy (PH) collapses. Section 3.3 studiesthe issue of whether
the existence of sparse Turing-hard or Turing-complete sets for UP has similarly unlikely
consequences. Unfortunately, the promise-like definition of UP—its unambiguity, the very
core of its nature—seemsto block any similarly strong claim for UP and the unambiguous
polynomial hierarchy, denoted by UPH, which was introduced recently by Niedermeier
and Rossmanith [NR93]. Lange, Niedermeier, and Rossmanith [LR94][NR93, p. 483]
al so define a promise analog of UPH, the promise unambiguous polynomial hierarchy, that
requires only that oracle computations actually executed be unambiguous. This model
of access to an oracle from a promise class is known from the literature as “guarded”
access [GS88, CHV93].! Even though we cannot prove the “clean” UPH analog of the
Karp-Lipton result, we establish (in the context of guardedly unambiguous oracle access)
someresults showing that UPisunlikely to have sparse Turing-complete or Turing-hard sets.
In particular, if UP has sparse Turing-complete sets, then the levels of the unambiguous
polynomia hierarchy are smpler than one would otherwise expect: they “dip down”
dightly in terms of their location within the promise unambiguous polynomia hierarchy,

1Grollmann and Selman used the term “smart” [GS88] rather than “guarded” [CHV93].
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i.e., the kth level of UPH is contained in the (k — 1)st level of the promise unambiguous
polynomia hierarchy. If UP has Turing-hard sparse sets, then UP is low for NPY7; we
also provide a generalization of this result related to the promise unambiguous polynomial
hierarchy. Furthermore, we show that the same assumption implies that the kth level of
UPH, where k > 3, can be accepted viaa DPOM given access to both an NP® set and the
(k — 1)st level of the promise unambiguous polynomial hierarchy.

Finally, Section 3.4 studies an issue that is related to the open question of whether the
polynomial hierarchy is contained in the class SPP. (Note that the promise unambiguous
polynomial hierarchy is contained both in the polynomial hierarchy and in SPP) Though
Todaand Ogiwarahave shown that for many counting classes such as PP, GP, and $P, each
set in the polynomial hierarchy randomly reduces to some set in the counting class [TO92]
(thus generalizing the above-mentioned result of Valiant and Vazirani to al levels of PH),
they conjectured that thisresult isunlikely to hold for SPP aso. This conjecture again rests
on the promise nature of SPP. However, we will show in Section 3.4 that, in the context
of promise problems defined in the sense of Even, Selman, and Yacobi [EY 80, ESY 84],
the reduction question can be resolved: Each set in the polynomial hierarchy “randomly
reduces’ to SPP, wherewe use Selman’sapproach [ Sel88] to “ reducti ons between promise
problems.” This supports the conjecture that SPP indeed is more powerful than SPP.

3.2 Boolean Hierarchiesover Classes Closed Under | nter-
section

The Boolean hierarchy is a natural extension of the classes NP [Coo71, Lev73] and
DP £ NP A coNP [PY84]. Both NP and DP contain natura problems, as do the lev-
els of the Boolean hierarchy. For example, graph minimal uncolorability is known to
be complete for DP [CM87]. Note that DP clearly is closed under intersection, but is
not closed under union unless the polynomial hierarchy collapses (due to [Kad88], see
also [CK90b, Cha91]).

Definition 3.2.1 [CGH"88, KSW87, Haul4] Let K be any class of sets.
1. The Boolean (“ alternating sums” ) hierarchy over :

CG1(K) VK if k odd K> 2

cK) Lk, )L , ,
(1) k() Ci 1 () AcoK if keven -
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CH(K) £ | Cu(K).

k>1
2. The nested difference hierarchy over K:

D1(K) £ K, Dx(K) £ K —Dia(K), k> 2, DH(K) £ | Di(K).

3. The Hausdorff (“ union of differences’) hierarchy over K:2

Ei(K) LK, Eo(K) LK—K, E(K) LE(K)VE 2(K), k> 2,

EH(K) £ | Ex(K).

k>1
4. The symmetric difference hierarchy over :

SD1(K) £ K, SDx(K) £ SDy 1(K)AK, k> 2, SDH(K) £ | ] SDi(K).

k>1

It is easily seen that for any X chosen from {C, D, E, SD}, if K contains () and £*, then
forany k > 1,
Xk (K) U coXy (K) € Xyy1(K) N coXyy1(K).

The following fact is shown by an easy induction on n.

Fact 3.2.2 For every class K of setsand every n > 1,
1. Don 1(K) = coCy, 1(cOK), and

2. DZnUC) = Czn(COK:).

2Hausdorff hierarchies ([Haul4], see [CGH'88, BBJ*89, GNW9Q], respectively, for applications to
NP, R, and GP) are interesting both in the case where, as in the definition here, the sets are arbitrary sets
from I, and, asis sometimesused in definitions, the setsfrom K are required to satisfy additional containment
conditions. For classes closed under union and intersection, such as NP, the two definitionsareidentical, level
by level ([Haul4], see also [CGH™88]). In this paper, as, e.g., UP, isnot known to be closed under union, the

distinction is nontrivial.
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Proof. The base case holds by definition. Suppose both statements of thisfact to be true
forn > 1. Then,

Donia(K) = KA(COKV Do a(K)) ™ KA (COKV c0Co_1(coK))
= KACO(KNACy_1(cOK)) = K /AcoC,,(coK)
= co(cokV C,,(cok)) = €0Cy,1(COK)

shows Part 1 of thisfact forn + 1, and

Doni2(K) = K—(K—Dp(K)) & KA (COKV Con(c0K)) = Cona(cOK)

shows Part 2 of thisfact for n + 1. O

Corollary 3.23 1. CH(UP) = coCH(UP) = DH(coUP), and

2. CH(coUP) = coCH(coUP) = DH(UP).

We are interested in the Boolean hierarchies over classes closed under intersection (but
perhaps not under union or complementation), such as UP, US, and DP. We state our
theorems in terms of the class of primary interest to us, UP. However, many apply to
any nontrivial class (i.e., any class containing X* and ()) closed under intersection (see
Theorem 3.2.10). Although it has been proven in [CGH*88] and [KSW87] that all the
standard normal forms of Definition 3.2.1 coincide for NP2 the situation for UP seems
to be different, as UP is probably not closed under union. (The closure of UP under
intersection is straightforward.) Thus, al the relations among those normal forms have to
be reconsidered for UP.

Wefirst provethat the symmetric difference hierarchy over UP (or any classclosed under
intersection) equalsthe Boolean closure. Though Kobler, Schoning, and Wagner [KSW87]
proved thisfor NP, their proof gateways through a class whose proof of equivalenceto the
Boolean closure uses closure under union, and thus the following result is not implicit in
their paper.

Theorem 324  SDH(UP) = BC(UP).

3Due essentially to its closure under union and intersection, and this reflects a more general behavior
of classes closed under union and intersection, as studied by Bertoni et a. ([BBJ"89], see also [Haul4,
CGH*88, KSW87, CK90b, Chadl]).
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Proof. Theinclusionfrom lefttorightisclear. For the converseinclusion, it is sufficient
to show that SDH(UP) is closed under all Boolean operations, as BC(UP), by definition,
is the smallest class of sets that contains UP and is closed under all Boolean operations.
Let L and L' be arbitrary sets in SDH(UP). Then, for some k,1 > 1, there are sets
A1, ..., A Bq,... ,BiinUPrepresenting L and L'

L=A;A---AA, and L' = B;A---AB,.

LNL = (AL,A) N (ALB)) = Aieqa,... 1, jen,... u (AL N By),

and since UPisclosed under intersection and SDH(UP) is(trivially) closed under symmetric
difference, we clearly have that LN L' € SDH(UP). Furthermore, since L = I*AL
impliesthat L € SDH(UP), SDH(UP) is closed under complementation. Since all Boolean
operations can be represented in terms of complementation and intersection, our proof is
complete. O

Next, we show that for any class closed under intersection, instantiated below to the
case of UP, the Boolean (alternating sums) hierarchy over the class equals the Boolean
closure of the class. Our proof isinspired by the techniques used to prove equality in the
case where closure under union may be assumed.

Theorem 3.25 CH(UP) = BC(UP).
Proof. Wewill provethat SDH(UP) C CH(UP). By Theorem 3.2.4, thiswill suffice.
Let L beany setin SDH(UP). Thenthereisak > 1 (thecase k = listrivial) such that

Le SDk(UP) Let Ul, A ,Uk be thEWitnng UP sets; that is, L = W ALLA - - - AUy,
By theinclusion-exclusion rule, L satisfies the equalities below. For odd k,

L = (---(((uluuzu---uuk)m(u(ujlmujz)» U

< U (uilﬂujzmui3)>> ARERRN ( U (uilﬂ"'ﬂujk)>> )
j1<j2<js3 J1<e<Jie
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where each subscripted j term must belongto {1, ... , k}. For even k, we similarly have:

L = (---(((uluuzu---uuk)m(u(ujlmujz)» U

(U (ujlmujzmuj3))>m---m( U (ujlm---mujk)>).

For notational convenience, let us use Ag,..., Ay to represent the respective terms in
the above expressions (ignoring the complementations). By the closure of UP under
intersection, each A;, 1 < i < k, is the union of (‘f) UP sets By, ..., Biv('i)' Using the
fact that 0 is clearly in UP, we can easily turn the union of n arbitrary UP sets (or the
intersection of n arbitrary coUP sets) into an alternating sum of 2n — 1 UP sets. So for
instance, A; = U; U U, U - - - U Uy can bewritten

(---(((ulm@uuz)m@)u---uuk),

call this C;. Clearly, C; € Cy 1(UP). To transform the above representation of L into an
alternating sum of UP sets, we need two (trivial) transformations holding for any m > 1
and for arbitrary setsS and Ty, ... , Ty

SN(MUTU--UTw) = (- ((SNTYNT) N+ )NTm (3.1)
SU(MMUTU---UTy) = (--((SUTYUT) U---) U T (3.2

Using (3.1) withS = C; and Ty = Boy,..., T = BZ»(‘E) and the fact that () isin UP,
A1 N A, can be transformed into an alternating sum of UP sets, call this C,. Now apply
(32)withS =C,and Ty = Bzg, ..., T = 83,(5) to obtain, again using that () isin UPR,
an aternating sum Cs = (A1 N A;) U Az of UP sets, and so on. Eventually, this procedure
of alternately applying (3.1) and (3.2) will yield an alternating sum Cy of setsin UP that
equalsL. Thus, L € CH(UP). a

Corollary 3.26  SDH(UP) and CH(UP) are both closed under all Boolean operations.

Note that the proofs of Theorems 3.2.5 and 3.2.4 implicitly give a recurrence yielding
an upper bound on the level-wise containments. We find the issue of equality to BC(UP),
or lack thereof, to be the central issue, and thus we focus on that. Nonetheless, we point
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out in the corollary below that losing the assumption of closure under union seemsto have
exacted aprice: though the hierarchies SDH(UP) and CH(UP) are indeed equal, the above
proof embeds SD, (UP) in an exponentially higher level of the C hierarchy. Similarly, the
proof of Theorem 3.2.4 embeds C,.(UP) in an exponentially higher level of SDH(UP).

Corollary 3.2.7 (tothe proofs of Theorems 3.2.5 and 3.2.4)
1. Foreachk > 1, SDy(UP) C Cokr1__»(UP).

2k —1 ifkisodd

2. Foreachk > 1, C,.(UP) C SD UP), whereT (k) = e
2 L G(UP) € SDrq(UP) (k) {2k—2 if k iseven.

Proof. For an SDy(UP) set L to be placed into the R(k)th level of CH(UP), L is
represented (in the proof of Theorem 3.2.5) as an alternating sum of k terms A4, ... , Ay,
each A; consisting of (¥) UP sets B ;. In the subsequent transformation of L according
to the equations (3.1) and (3.2), each A; requires as many as (¥) — 1 additional terms §
or (), respectively, to be inserted, and each such insertion brings us one level higher in
the C hierarchy. Thus,

=k K =k

R(k) ;(1>+<(1) ) k+ ;(1) k

1

A closeinspection of the proof of Cy(UP) C SDry(UP) according to Theorem 3.2.4 |eads
to the recurrence:

2T(k—1)+3 ifk > lisodd

T(1)=1 and T(k)={2T(k_1) if k > liseven,

sinceany set L. € C(UP) canberepresented by setsA € C, 1(UP) and B € UPasfollows:

L = AUB = ANB = X*A((Z*AA) N (Z*AB)) if kisodd,
L = ANB = AN(I*AB) if kiseven.

The above recurrenceisin (almost) closed form:

2 —1 ifk>1i
T(k) = fk— !sodd
2k —2 ifk > liseven,
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as can be proven by induction on k (we omit the trivial induction base): For odd k (i.e.,
k=2n—1forn > 1),assumeT(2n — 1) = 2> 1 — 1to betrue. Then,

T(2n+1) =2T(2n)+3=4T(2n— 1)+ 3L 4 (221 1) 43 =221 _1,
For evenk (i.e., k = 2n forn > 1), assume T (2n) = 2°* — 2 to betrue. Then,
T(2n+2) =2T(2n+1) =2(2T(2n)+3) L 4 (2> —2) +6=2""2_2 O

Remark 3.2.8  The upper bound in the second part of the above proof can be dightly
improved using the fact that Z*AZ*AA = )AA = A for any set A. This gives the
recurrence:

2T(k—1)+1 ifk > lisodd

T(1)=1 and T(k):{ZT(k_g if k > Lliseven,

or, equivalently, T(1) = 1, T(2) = 2, and T(k) = 2¢ 1 + T(k — 2) for k > 3. Though
this shows that the upper bound given in the above proof is not optimal, the new bound
is not a strong improvement, as it still embeds G, (UP) in an exponentialy higher level
of SDH(UP). We propose as an interesting task the establishment of tight level-wise
contai nments between the two hierarchies SDH(UP) and CH(UP) that capture the Boolean
closure of UP, at least up to the limits of relativizing techniques. We conjecture that there
is some relativized world in which an exponential increase (though less dramatic than the
particular exponential increase of Corollary 3.2.7) indeed is necessary.

Theorem 3.2.9 below shows that each level of the nested difference hierarchy is con-
tained in the same level of both the C and the E hierarchy. Surprisingly, it turns out (see
Theorem 3.2.13 below) that, relative to arecursive oracle, even the fourth level of CH(UP)
and the third level of SDH(UP) are not subsumed by any level of the EH(UP) hierarchy.
Consequently, neither the D nor the E normal forms of Definition 3.2.1 capture the Boolean
closure of UP.

Theorem 3.29 Forevery k > 1, Dy (UP) C C(UP) N Ex(UP).

Proof.  For the first inclusion, by [CH85, Proposition 2.1.2], each set L € Dy (UP) can
be represented as
L=A;—(A2— (- (A1 —Ax)--+)),
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where A; = ;54 L, 1 <1 < k, and the L's are the original UP sets representing L.
Note that since the proof of [CH85, Proposition 2.1.2] only usesintersection, thesets A; are
in UP. A special case of [CHB85, Proposition 2.1.3] saysthat setsin D, (UP) viadecreasing
chainssuch asthe A; arein C(UP),and so L € C(UP).

The proof of the second inclusion is done by induction on the odd and even lev-
els separately. The induction base follows by definition in either case. For odd levels,
assume Dy, 1(UP) C E,, 1(UP) to be valid, and let L be any set in Do, 1 (UP), i.e
L € UP— (UP— Dy, 1(UP)). By our inductive hypothesis, L can be represented as

L= (B_ @(cmmulz)),

where A, B, C;, Dy, and E are setsin UP. Thus,

i:1

= AN Eu(UCmD UE))

= (ANB)U (UAmc OD)U (ANE)

i=1

= (OFmE) UG
i=1

whereF, =ANC;,for1<i<n—-1,F,=A,D,=B,andG=AnNE. SinceUPis
closed under intersection, each of these setsisin UP. Thus, L € E,,,1(UP). The proof for
the even levelsis analogous except that the set E is dropped. O

Note that most of the above proofs used only the facts that the class is closed under
intersection and contains £* and ()

Theorem 3.210 Theorems 3.2.4, 3.2.5, and 3.2.9 and Corollaries 3.2.6 and 3.2.7 apply
to all classesthat contain £* and () and are closed under intersection.

Remark 3.2.11  Although DP is closed under intersection but seems to lack closure
under union (unless the polynomial hierarchy collapses to DP [Kad88, CK90b, Cha91])
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and thus Theorem 3.2.10 in particular appliesto DP, we note that the known results about
the Boolean hierarchy over NP [CGH'88, KSW87] in fact even for the DP case imply
stronger results than those given by our Theorem 3.2.10, due to the very special structure
of DP. Indeed, since, e.g., Ex(DP) = E; (NP) for any k > 1 (and the same holds for the
other hierarchies), it follows immediately that al the level-wise equivalences among the
Boolean hierarchies (and also their ability to capture the Boolean closure) that are known to
hold for NP also hold for DP even in the absence of the assumption of closure under union.
This appears to contrast with the UP case (see Remark 3.2.8).

The following combinatorial lemmawill be useful in proving Theorem 3.2.13.

Lemma3.2.12 [CHV93] Let G = (S, T, E) be any directed bipartite graph with out-

degree bounded by d for all vertices. Let S’ C S and T" C T be subsets such that

S"D{seS|(FteT)(s,t) e E]},andT' D {t € T|(3s € S) [(t,s) € E]}. Then either:
1 ISl < 2d, or

2. ||| < 2d, or
3. (3s€S)(FteT)(s,t) £E A (t,5) & El.

For papers concerned with oracles separating internal levels of Boolean hierarchies
over classes other than those of this paper, we refer the reader to ([CGH* 88, Cai87,
GNWOO0, BJY 90, Cro94], see also [GW87]). Theorem 3.2.13 is optimal, as clearly
C3(UP) C EH(UP) and SD,(UP) C EH(UP), and both these containments rel ativize.

Theorem 3.2.13  There are recursive oracles A and D (though we may take A = D)
such that

1. C4(UP*) ¢ EH(UP*), and

2. SD3(UPP) ¢ EH(UPP).

Corollary 3.2.14 Thereisarecursive oracle A such that

1. EH(UP") % BC(UP*) and DH(UP*) # BC(UP*),* and

4As Fact 3.2.2 shows that DH(UP) = CH(coUP), this oracle A also separates the Boolean (alternating
sums) hierarchy over coUP from the fourth level of the same hierarchy over UP and, thus, from BC(UP).
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2. EH(UP*) and DH(UP*) are not closed under all Boolean operations.

Proof of Theorem 3.2.13. Although the theorem claims there is an oracle keeping
C4(UP) from being contained in any level of EH(UP), we will only prove that for any
fixed k we can ensure that C,(UP) is not contained in Ex (UP), relative to some oracle A <),
In the standard way, by interleaving diagonalizations, the sequence of oracles, A, can
be combined into a single oracle, A, that fulfills the clam of the theorem. An analogous
comment holdsfor the second claim of thetheorem, with asequenceof oraclesD® yielding
asingleoracle D. Similarly, both statements of the theorem can be satisfied simultaneously
viajust one oracle, viainterleaving with each other the constructionsof A and D. Though
below we construct just A and D™ for some fixed k, as a notational shorthand we'll
use A and D below to represent A and D™,

Before the actual construction of the oracles, we state some preliminaries that apply to
the proofs of both statementsin the theorem.

For any n > O and any stringv € £=", define ST g {w|vww € I"}. The sets S} are
used to distinguish between different segmentsof ™ in the definition of the test languages,
LA and Lp.

Fix any standard enumeration of all NPOMs. Fix any k > 0. We need only consider
even levels of EH(UP), as each odd level is contained in some even level. Call any
collection of 2k NPOMs, H = (Ny1,...,Nyx1,Nia,..., Ny ), apotential (relativized)
E2 (UP) machine, and for any oracle X, defineits language to be:

k
L(HY) £ (LINY) — LINY,)) .
i=1

If for some fixed oracle Y, a potential (relativized) Ex (UP) machine HY has the property
that each of its underlying NPOMs with oracle Y is unambiguous, then L(HY) indeed isin
Ex (UPY). Clearly, our enumeration of all NPOMs induces an enumeration of all potential
Ex (UP) oracle machines. For j > 1, let H; be the jth machine in this enumeration. Let p;
be a polynomial bounding the length of the computation paths of each of H;’s underlying
machines (and thus bounding the number of and length of the strings they each query). As
anotational convenience, we henceforward will use H and p as shorthands for H; and p;,
and we will denote the underlying NPOMsby Ni1,...,Ny1,N1g,...,Ngo.

The oracle X, where X stands for A or D, is constructed in stages, X = [J;,; X;j. In
stagej, wediagonalize against H by satisfying thefollowing requirement R; for every j > 1:
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R; : Eitherthereisann > 2andani, 1 < i < k, such that one of Nf"l or Nf"z oninput O™ is
ambiguous (thus, H isin fact not an Ex (UP) machinerelativeto X), or L(HX) # Lx.

Let X; be the set of strings contained in X by the end of stage j, and let Xj' be the set of
strings forbidden membership in X during stage j. The restraint function r(j) will satisfy
the condition that at no later stage will strings of length smaller than r(j) be added to X.
Also, our construction will ensurethat r(j) isso largethat X;_; containsno strings of length
greater than r(j). Initialy, both X, and X, are empty, and r(1) is set to be 2.

We now start the proof of Part 1 of the theorem. Define the test language:
L2 0" (Ix) [x e SgNA] A (Vy) [y € SToNA] A (Vz) [z € STy NA]L

Clearly, La isin NP* A coNP* A coNP*. However, if we ensure in the construction
that theinvariant ||ST N A|| < lismaintained for v € {0, 10, 11} and for every n > 2, then
La isevenin UP* A coUP* A coUP?, and thusin C4(UP?).

We now describe stage j > 0 of the oracle construction.

Stagej: Choosen > 7(j) so largethat 22 > 3p(n).

Casel: O™ € L(HA-1). Since0™ ¢ L, wehave L(HA) # La.
Case2: O™ ¢ L(H™-1). Choosesomex € S and set B; := A;_1 U {x}.
Case2.1: 0™ ¢ L(HP). Letting A; := B; impliesO™ € La, so L(H*) # La.
Case2.2: O™ € L(H%). Thenthereisani, 1 <1i < k, suchthat O € L(N;})
and O™ ¢ L(NE;). “Freeze’ an accepting path of NE}(O“) into Aj'; that
is, add those strings queried negatively on that path to A) thus forbidding
them from A for all later stages. Clearly, at most p(n) stringsare “frozen.”
Case22.1: (Fz€(SHUSY) —A)) [on ¢ L(NE;“{Z})] .
Choose any such z. Set A; := B; U {z}. Wehave O™ € L(H?) — La.
Case222 (Vze (SHUSY) —A)) [on = L(NE;U{Z})].
To apply Lemma 3.2.12, define adirected bipartitegraph G = (S, T, E)
by S £ SH— A, TESy A, andforeachs € Sandt € T,
(s,t) € Eif and only if NE;U{S} queries t along its lexicographically
first accepting path, and (t,s) € E is defined analogously. The out-
degree of al vertices of G is bounded by p(n). By our choice of n,
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min{||S||, [|T]l} > 22 — p(n) > 2p(n), and thus aternative 3 of
Lemma3.2.12 applies. Hence, thereexist stringss € Sandt € T such
that NB U{S}(O") accepts on some path p; on which t is not queried,
and N? 17 (0n) accepts on some path p; on which s is not queried.
Since p; (pt) changes from reject to accept exactly by adding s (t) to
the oracle, s (t) must have been queried on p; (p:). We conclude that
ps # Pr, and thus N;5"*(O™) has at least two accepting paths. Set
A; = B;j U {s, t}.

In each case, requirement R; isfulfilled. Let r(j + 1) be max{n, w;}, where w; isthelength
of the largest string queried through stagej.
End of stagej.

We now turn to the proof of Part 2 of thetheorem. Thetest language here, Lp, isdefined

by:

(Ix)[x e SgN D] A (Fy) [y € ST ]/\(32)[165 D])V
oo (") x € SgNDIA (Vy)ly € S,oNDI A (F2) [z € D)V
((Fx) [x € Sg N D] A (Vy) ly ¢S ]/\(Vz)[ngS D])V
(") [x ¢ SENDI A (Jy) Iy DI A (Vz) [z ¢ STy N DI)

Again, provided that theinvariant ||S] N D|| < lismaintainedfor v € {0, 10, 11} and every
n > 2 throughout the construction, Lp isclearly in SD3(UPP), asfor all sets A, B, and C,

AABAC = (ANBNC)U(ANBNC)U(ANBNC)U(ANBNC).
Stagej > 0 of the construction of D isasfollows.

Stagej: Choosen > r(j) solargethat 22 > 3p(n).

Casel: O™ € L(HPi—

). Since0™ ¢ Lp, we have L(HP) # Lp.
Case2: 0" ¢ L(HPi1).

(

(

Choosesomex € S§ and set E; := D;_; U {x}.
Case2.1: 0™ ¢ L(H%). Letting D; := E; impliesO™ € Lp, so L(HP) # Lp.
Case2.2: O™ € L(H%). Then, thereisani, 1 <1i < k, suchthat 0" € L(ND)

and 0™ ¢ L(N ]) “Freeze” an accepting path of N (O“) mtoD Again,
at most p(n) strings are “frozen.”
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Case?2.2.1: (HW € ( 1110 U STlll) — D)I) [On Q’ L(NEEU{W})} .
Chooseany suchw and set D; := E;U{w}. WehaveO™ € L(HP)—Lp.
Case22.2: (Vw e (SHUSH) — D) [On c L(stzu{w})}_

As before, Lemma 3.2.12 yields two strings s € STy — Dj' and t €
E]'U{S,t}

1. — Dj such that N;;, " (0™) isambiguous. Set D; := E; U {s, ).
Again, R; isawaysfulfilled. Definer(j + 1) as before.
End of stagej. O

Finally, we note that a slight modification of the above proof establishes the analogous
result (of Theorem 3.2.13) for the case of US [BG82] (which is denoted INP in [GW87,
Cro94]).

3.3 Sparse Turing-completeand Turing-hard Setsfor UP

In this section, we show some consequences of the existence of sparse Turing-complete
and Turing-hard sets for UP. This question has been carefully investigated for the class
NP[KL80, Hop81, KS85, BBS86a, L S86, Sch86, Kadg9].> Kadin showed that if thereisa
sparse <}-complete set in NP, then the polynomial hierarchy collapsesto PNPlodl 1K ad89).
Due to the promise nature of UP (in particular, UP probably lacks complete sets [HH88]),
Kadin's proof does not seem to apply here. But does the existence of a sparse Turing-
complete set in UP cause at least some collapse of the unambiguous polynomial hierarchy
(which wasintroduced recently in [NR93])?

Cai, Hemachandra, and Vyskot [CHV 93] observe that ordinary Turing access to UP,
as formalized by PP, may be too restrictive a notion to capture adequately one’s intuition
of Turing access to unambiguous computation, since in that model the oracle machine has
to be unambiguous on every input—even those the base DPOM never asks (on any of its
inputs). To relax that unnaturally strong uniformity requirement they introduce the class
denoted P“", in which NP oracles are accessed in a guardedly unambiguous manner, anat-
ural notion of access to unambiguous computation—suggested in the rather anal ogous case

°For reductions less flexible than Turing reductions (e.g., <h,, <}, etc.), thisissue has been studied even
more intensely (see, e.g., the surveys[You92, HOW92]).

SNotethat it is not known whether such a collapseimplies acollapse of PH. Note also that Toda's[Tod91]
result on whether P-sel ective sets can be truth-table-hard for UP does not imply such a collapse, astruth-table
reductions are less flexible than Turing reductions.
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of NP coNP by Grollmann and Selman [ GS88]—in which only computations actually ex-
ecuted need be unambiguous. Lange, Niedermeier, and Rossmanith [LR94][NR93, p. 483]
generalize this approach to build up an entire hierarchy of unambiguous computations in
which the oracle levels are guardedly accessed (Definition 3.3.1, Part 3)—the promise un-
ambiguous polynomial hierarchy. Since the unambiguous polynomia hierarchy and the
promise unambiguous polynomial hierarchy are analogs of the polynomial hierarchy, we
recall from Chapter 2 the definition of the polynomial hierarchy in Definition 3.3.1 below.

Definition 3.3.1

1. The polynomial hierarchy [MS72, Sto77] is defined as follows:
2 ELp A Lp osp LNpE, TP L ocos?, AP L P, k> 1, and

dof
PH = UkZO v

2. The unambiguous polynomial hierarchy [NR93] is defined as follows:
ust L pua? £ p, us? £ ypYmis, UrP £ cous?, uAP £ PUTi k> 1, and

UPH & Usso UZD-

3. The promise unambiguous polynomial hierarchy ([LR94][NR93, p. 483]) is defined
asfollows: Usp L P, yz? L UP, andfork > 2, L € YD if andonly if L € £P
viaNPOMs Ny, ..., Ny satisfying for al inputsx and every i, 1 < i < k — 1, that
if N; askL'sE So)me query q during the computation of N1(x), then N;,1(q) with oracle

L(Ni];'i“ )Y has at most one accepting path. UPH < Urso UZ}. The classes

UA} and UTTY, k > 0, are defined analogously. As anotational shorthand, we often
use PY” to represent 24AY; we stress that both notations are used here to represent
the class of sets accepted via guardedly unambiguous accessto an NP oracle (that is,
the class of sets accepted by some P machine with an NP machine’'s language as its
oracle such that on no input does the P machine ask its oracle machine any question
on which the oracle machine has more than one accepting path).

4. For each of the above hierarchies, we use IP* (respectively, UZP”* and ¢ £P*) to
denote that the X} (respectively, UL and ¢/ X}) computation is performed relative to
oracle A; similar notation is used for the TT and A classes of the hierarchies.

Thefollowing factsfollow from the definition (see also [NR93]) or can easily be shown.
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Fact 3.3.2 Foreveryk > 1,
1. UZP C UYZP C 5P and UAP C UAP C AP,
2. 1f UZP = UTT?, then UPH = UZP.
3. If ULP = ULP ,, then UPH = UZP_..
4. YzpUPnelP — ysP gnd PUEKOUTE — UP N UTTP,

“UP<y,” theanaogsof UPinwhichupto k accepting pathsare allowed, hasbeen studied
in various contexts [Wat88, Hem87, Bei89, CHV93, HH94, HZ93]. One motivation for
UX} isthat, for each k, UP<, C UX} [NR93].

Although we are not able to settle affirmatively the question posed at the end of thefirst
paragraph of this section, we do prove in the theorem below that if thereis a sparse Turing-
complete set for UP, then the levels of the unambiguous polynomial hierarchy are simpler
than one would otherwise expect: they “dlip down” dlightly intermsof their location within
the promise unambiguous polynomial hierarchy, i.e., for each k > 3, the kth level of UPH
iscontained inthe (k — 1)st level of UPH.

Theorem 3.3.3  If there exists a sparse Turing-complete set for UP, then
1. UPYP C P¥? and
2. UZY C uxy | foreveryk > 3.

Proof.  For thefirst statement, let L be any setin UPYP. By assumption, L € UP” = UP®
for some sparse set S € UP. Let g be a polynomial bounding the density of S, that is,
IS=™|| < q(m) for every m > 0, and let Ns be a UPM for S. Let N; be a UPOM
witnessing that L € UPS, that is, L = L(N$). Let p(n) be a polynomial bounding the
length of al query strings that can be asked during the computation of Ny on inputs of
length n. Define the polynomia r(n) g q(p(n)) that bounds the number of stringsin S
that can be queried in the run of N oninputs of lengthn.

To show that L € P¥?, we shall construct a DPOM M that may access its P oracle
D in a guarded manner (more formally, “may access its NP oracle D in a guardedly
unambiguous manner,” but we will henceforward use /P and other I/ - - - notationsin this
informal manner). Before formally describing machine M (Figure 3.1), we give some
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informal explanations. M will proceed in three basic steps: First, M determines the exact
census of that part of S that is relevant for the given input length, ||[S<P(™)]||. Knowing
the exact census, M can construct (by prefix search) a table T of al strings in S<P(™)
without asking queriesthat make its oracle’s machine ambiguous, so the P“” -like behavior
is guaranteed. Finally, M asks its oracle D to simulate the computation of N; on input x
(answering N ’s oracle queries by table-lookup using table T), and accepts accordingly.

In the formal description of machine M (given in Figure 3.1), three oracle sets A,
B, and C are used. Since M has only one UP oracle, the actual set to be used is
D = A @& B @ C (with suitably modified queriesto D). A, B, and C are defined as follows
(weassumethe set T below is coded in some standard reasonable way):

(V€:1 <€ <k)[leel <p(n) A Ns(ce) accepts

N>0ANA1<j<kAO0Lk<T(n)A
B = <1n)i)j>k'>b> (Elcl <lex €2 <lex * ** <lex Ck) (ngﬁgk) ,
[lcdl < p(n) A Ns(c) accepts A thei™ bit of c; isb]

C = {(T)ITI < v(lxl) A N (x) accepts}.

A gL {(1“,k>

n>0A0<k<rn) A (Je1 <jex €2 <ipex * * * <lex Ck) }

It is easy to see that M runs deterministicaly in polynomial time. This proves that
L € PY7,

In order to prove the second statement, let L be a set in UX} for any fixed k > 3.
By assumption, there exists a sparse set S in UP such that L € USP® = UZPS; et

_.L(Nifl)
Ni,..., Ny 1 bethe UPOMsthat witnessthisfact, that is, L = L(NE(N2 )).
Now we describe the computation of a ¢/X}_; machine N recognizing L. As before,
N on input x computesin P“? itstable of advice strings, T = S<P(*) and then simulates

TINE )
the UZEfl computation of NE(N'Z )(x) except with Ny, Ny, ..., Ny_; modified as
follows. If in the simulation some machine N;, 1 < i < k — 2, consultsits original oracle
L(Nﬂl) about some string, say z, then the modified machine N; queries the modified
machine at the next level, N ,, about the string (z, T) instead. Finally, the advicetable T,
which has been “passed up” in this manner, is used to correctly answer all queriesof Ny_;.

TNy
Note that N’s oracle in this simulation, L(N;L(N?’ )), isnot in general aUX?}_,

set (and L isthus not in UXY_, in general), as the above-described computation depends



36 Chapter 3. UP: Boolean Hierarchies and Sparse Turing-Complete Sets

Description of DPOM M.
input x;
begin
n:=[x[;
k:=r(n);
loop
if (1", k) € A then exit loop
gdsek:=k—-1
end loop (* k isnow the exact census of SSP(M) )
T:=0; (* T collects the strings of S<P(™) *)
forj=1tokdo
Cj 1= €,
i:=1;
repeat
if (1",1,j,k,0) € Bthenc;:=¢;0;i:=1+1
else
if (1",1,j,k,1) € Bthenc;:=c¢;1;i:=1+1
gdsei:=0 (* thelex. j™ string of S<P™) has no i bit *)
until i =0;
T:=TuU {Cj}
end for
if (x,T) € C then accept
elseregect
end

End of Description of DPOM M.

Figure 3.1: DPOM M guardedly accessing an oracle from /P to accept a set in UPYP.



3.3. Jpoarse Turing-complete and Turing-hard Setsfor UP 37

on the advice table T, and so, for some bad advice T, the unambiguity of the modified UP
machinesN;, N5, ..., N, isnolonger guaranteed. But since our base machine N isable
to provide correct advice T, we have indeed shown that L € U/Z} . O

In the above proof, the assumption that the sparse set S isin UP is needed to determine
the exact census of S (up to a certain length) using the UPM for S. Let us now consider the
weaker assumption that UP hasonly a Turing-hard sparse set. Karp and Lipton have shown
that if thereisasparse Turing-hard set for NP, then the polynomial hierarchy collapsestoits
second level [KL80].” Hopcroft [Hop81] dramatically simplified their proof, and Bal cazar,
Book, and Schoning [BBS86a, Sch86] generalized, as Theorem 3.3.6, the Karp-Lipton
result; the general approach of Hopcroft and Balcazar, Book, and Schoning will be central
to our upcoming proof of Theorem 3.3.7.

Definition 3.3.4 [MP79]

1. A partial order <,y on I* is polynomially well-founded and length-related if and
only if (a) every strictly decreasing chain is finite and there is a polynomial p such
that every finite <py-decreasing chain is shorter than p of the length of its maximum
element, and (b) (3q € IPol) (Vx,y € £*) [x <pw y = x| < q(jy))].

2. A set A issdlf-reducible if and only if there exist a polynomially well-founded and
length-related order <, on £* and aDPOM M such that A = L(M#) and on any
input x € *, M queriesonly stringsy withy <pw x.

Lemma3.3.5 [BBS86a] Let A be a self-reducible set and let M witness A’s self-
reducibility. For any set B and any n, if (L(M?))=" = B<", then A<™ — B<n 8

Recall the definition of Schoning'slow hierarchy [ Sch83] from Chapter 2. Of particular
interestto usistheclassLow, £ {A|A € NPand NPY™* € NPPL. Notethat for the special
case k = 0, Theorem 3.3.7 below says that sets meeting its hypothesis are Lows,.

Theorem 3.3.6 [BBS86a] If A isasaf-reducible set and thereisak > 0 and a sparse
set S suchthat A € £2°, then 5 C 5P, .

"Very recently, Kobler and Watanabe [KW95] have improved this collapse to zPPYP, and have also
obtained new consequences from the assumption that UP C (NP N coNP)/poly, whereas we obtain different
conseguences from the assumption that UP C P/poly.

8A can be viewed as a“fixed point” of M.
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We now state and prove our results regarding sparse Turing-hard sets for UP.

Theorem 3.3.7  If there exists a sparse Turing-hard set for UP, then

1. UPC Lows,, and

p, Uz}

k=j—3 P P .
2. UP C U}:]F”}:2 NPY*-1%%2 for every k > 3andeveryj, with0 < j < k—3.

Proof. 1. LetL e ZE’A, where A € UPviaUPM N 4 and polynomial-time bound t (we
assume that each step is nondeterministic—one can require this, without loss of generality,
while maintaining categoricity). Our proof uses the well-known fact that the “left set”
[Sel88, OW91] of any UP set is self-reducible and is in UP. More precisely, to apply
Theorem 3.3.6 we would need A to be self-reducible. Although that can’t be assumed in
genera of an arbitrary UP set, the left set of A, i.e, the set of prefixes of witnesses for
elementsin A defined by

B L {(x,y)] (32) llyzl = t()x]) A Na(x) accepts on path yzl},

does have this property and isalso in UP. A self-reducing machine Mg for B isgivenin
Figure 3.2. Note that the queries asked in the self-reduction are strictly less than the input
with respect to a polynomially well-founded and length-related partial order <, defined
by: For fixed x and all stringsys,y> € Z<PIX, (x,y;) <pu (x,y2) if and only if y; is
prefix of y;.

By assumption, since B isaUPset, B € P° for somesparseset S, so Theorem 3.3.6 with
k = O appliesto B. Furthermore, A isin P?, viaprefix search by DPOM M (Figure 3.3).
Thus, L € 527" € 28® C 53, which showsthat A € Lows,.

2. For k = 3 (thusj = 0), both inclusions have aready been shown in Part 1, as
5 C A5 Now fix any k > 3, and let L € UZP = UZP’} be witnessed by UPOMs
N1, Ny, ..., Ny_; and A € UP. Define B to be the left set of A asinPart 1, so A € P®
viaDPOM M, (see Figure 3.3), and B is self-reducible via Mg (see Figure 3.2), and B
isin UP. By hypothesis, B € P° for some sparse set S; let M be the reducing machine,
that is B = L(M3), and let m be a polynomia bound on the runtime of Mg. Let q bea
polynomial suchthat ||S<™|| < q(m) for every m > 0. Letp(n) beapolynomial bounding
the length of all query strings whose membership in the oracle set B can be asked in the
run of Ny (with oraclemachines N, N3, ..., Ny 1, M&) oninputs of lengthn. Definethe
polynomiasr(n) a m(p(n)) and s(n) a q(r(n)).
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Description of Self-reducer Mgy for B.

input (x,y);
begin
if ly| > t(x|) then rgject;
if Na(x) accepts on path y then accept
else
if (x,y0) € B or (x,yl) € B then accept
elseregect
end

End of Description of Self-reducer Mgy for B.

Figure 3.2: A salf-reducing machine for the left set of a UP set.

Description of DPOM M,
input x;
begin
Y i=F§;
while ly| < t(|x|) do
if (x,y0) € B then accept
esey:=yl
end while
if (x,y) € B then accept
elseregect
end

End of Description of DPOM Ma,.

Figure 3.3: A Turing reduction from a UP set A toitsleft set B via prefix search.

39
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To show that L € P¥*-1®%  we will describe a DPOM M that on input x, |x| = n,
using the £} part D (defined below) of its oracle, performs a prefix search to extract the
lexicographically smallest of all “good” advice sets (this informal term will be formally
defined in the next paragraph), say T, and then callsthe 4/}, part of itsoracleto simulate

LINR_D)

the USP” computation of Nz )(x) except with Ny, N, ..., N1 modified in
the same way as was described in the proof of Theorem 3.3.3. In more detail, if in the
simulation some machine N;, 1 < i < k — 2, consultsits original oracle L(Nﬂl) about
some string, say z, then the modified machine N{ gueries the modified machine at the next
level, N, ,, about the string (z, T) instead. Finally, if Ny ; consultsits original oracle A
about some query y, then the modified machine N,_, runs the P computation ME\(ME) on
input (y, T) instead to correctly answer this query without consulting an oracle.

An advice set T is said to be good if the set L(M]) is a fixed point of B’s self-

7).\ <p(n) n
reducer My Up to length p(n), that s, (L(M;ngB))) o (M) =™, and thus

B=<r(n) — (L(Mg))fp“” by Lemma3.3.5. This property is checked for each guessed T in
the 7 part of the oracle. Formally,

n>0A 3T C M) (vw:w <pm))[T={cy,...,ci}
(1™1,3,b) | AO< k< s(n) A c; <jex -+ - <iex cx A thei bit of ¢; isb
T
Awe LML) & we LIMAM))

The prefix search of M is similar to the one performed in the proof of Theorem 3.3.3 (see
Figure 3.1); M queries D to construct each string of T bit by bit.
To prove the other inclusion, fix any j, 0 < j < k — 3. We describe a UPOM N

P
PUTL s 3

witnessing that L € U):}D’Z2 . Oninput x, N simulates the UXY computation of the
firstj UPOMsNy, ..., Nj. Inthe subsequent X5 computation, two tasks have to be solved
in parallel: the computation of N;.; and Nj,» isto be smulated, and good advice sets T
have to be determined. For the latter task, the base machine of the £} computation guesses
all possible advice sets and the top machine checks if the guessed advice is good (that is,
if L(M3) is afixed point of Msy). Again, each good advice set T is “passed up” to the
machines at higher levels N;,3, ..., N1 (in the same fashion as was employed earlier
in this proof and also in the proof of Theorem 3.3.3), and is used to correctly answer all
queries of Ny_; without consulting an oracle. This proves the theorem. O

p&

Since Theorem 3.3.7 relativizes and there are relativized worlds in which UP? is not
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Lows [SL92], we have the following corollary.

Corollary 3.3.8 There is a relativized world in which (relativized) UP has no sparse
Turing-hard sets.

3.4 Promise SPP is at Least as Hard as the Polynomial
Hierarchy

The promise unambiguous polynomial hierarchy, UP#H, is by definition contained in the
polynomia hierarchy. Lange and Rossmanith [LR94] have shown that UPH is also
contained in SPP. The somewhat complicated proof given in [LR94] draws upon the
characterization of /PH by “weakly unambiguouscircuitsof exponential sizeand bounded
depth.” Alternatively, the result easily follows from the observation that the proof of the
self-lowness of SPP, i.e., SPPF = SPP [FFK94], can straightforwardly be modified to
even establish SPP7? = SPP, provided that the SPP oracle is accessed in a guarded
manner. Consequently, if one defines SPH to be the “gap analog” of UPH, then SPH
collapsesto SPP, and hence, UPH C SPH = SPP.

This section addresses a question that, quite generally speaking, is motivated by the fact
that the relation between PH and SPP is unknown.

Toda and Ogiwara have shown that for alarge family of counting classes K such as PP,
GP, and @P (whoserelation to PH also is not known), ™ C BP- K. Informally speaking,
with respect to random reductions, each such counting class K is at least as hard as the
polynomial hierarchy [TO92]. Itisnatural to ask whether such aresult also holds for SPP.°
Toda and Ogiwara conjectured that thisis not the case, i.e., SPP™, or even PH, isunlikely
to be contained in BP- SPP[T092], due essentially to the promise inherent in the definition
of SPP and to the fact that the method of [TO92] relies on there being no such promise for
the class K.

Further evidence for PH not being contained in BP - SPP is provided by the fact (noted
in [FFK94]) that one can easily (i.e., using known results) construct an oracle relative
to which Toda and Ogiwara's conjecture is true. Indeed, the following implications all

®More generally, Toda and Ogiwara pose the question of whether their technique applies to all the “ gap-
definable” classes [FFK94]—note that PP, CP, &P, and SPP al are gap-definable. In particular, SPP is the
smallest gap-definable class containing ) and X*.
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relativize (i.e., they hold relative to every oracle):

NP C BP-SPP=BPP¥ — P C PP
— P¥CBPP¥F
— PV C ppP
= PWYCPP

Since Beigel has constructed an oracle A such that PY®" ¢ PP* [Bei92], it follows from
the above implications that NP* ¢ (BP - SPP)A holds relative to the same oracle. Thus,
any proof refuting the conjecture of Toda and Ogiwarawould not relativize.

Toda and Ogiwara's main result can be stated as follows. Intuitively, it says that the

characteristic function of any set in PH can be approximated by a GapP function with high
probability.

Lemma3.4.1 ([TO92], see also [Gup9l])

(VL € PH) (3F € GapP) (3r € IPal) (Vx € X*)

Proxy Wl (x € L &= F(x,w) =1) A (x ¢ L & F(x,w) =0)] > i—i .

Remark 3.4.2 1. By applying atechnique that is based on transforming Boolean cir-

cuits, Tarui [Tar91] providesastronger version of thislemmathat achieves even one-
sided (rather than two-sided) error. He thus provesthat PH iscontained in ZP- PP and
in RP - GP, noting that his technique can also be applied to obtain PP C ZP - PP.
In[RV92], it is shown that GP™ C RP- GP. Thisresult, however, does not improve
on the result of [TO92], since Gupta has shown that BP - GP = RP - GP [Gup93].

. Both [TO92] and [Tar91] heavily draw upon Valiant and Vazirani’s technique of

probabilistically restricting the solution space of NP sets so as to provide a random
reduction from any NP set to every solution to (1SAT, SAT) [VV86]. Asacorollary,
NP C RP- @P, and this latter result has been generalized in [TO92, Tar91] to all
levels of PH and to non-promise counting classes other than &P. Our goal hereisto
provide ageneralizationto al levelsof PH that, formally, is closer tied to Valiant and
Vazirani’s actua result in terms of solutionsto promise problems. It isworth noting
that, when generalizing their result to al of PH, the class SPP is needed rather than
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UP (or, equivaently, (1SAT, SAT)) which suffices in the NP case—the reason is
that the alternation of 3 and V quantifiers requires the use of GapP functions rather
than #P functions.

The definition of the BP operator is below extended to apply also to classes of promise
problems, following Selman’s approach. Selman [Sel88] defines polynomial-time re-
ducibilities between promise problems according to the following definition template:
Let <P be an arbitrary polynomial-time reducibility. Then, a promise problem (Q, R)
is < PromiseProblem_reqjycible to a promise problem (S, T) if for every solution A of (S, T)
thereisasolution B of (Q, R) suchthat B <P A.

Remark 3.4.3 It might betempting to change Selman’sdefinition template so asto define
“(Q, R) PromiseProblem (G ‘T if each solution B of (Q, R) <P-reduces to some solution A
of (S, T). However, as pointed out to this author by Hemaspaandra, this approach would
be less useful than Selman’s, since under this definition even the trivial promise problem
& < (,0) hasthe property that (I*, SAT) < fromiseProblem £ | n fact, one can replace SAT
here with some problem complete for any huge complexity class much bigger than NP and
the claim holds. In contrast, Selman’s definition sets its quantification so as to make the
requirements to the “usefulness of a promise problem as a database to solve some given
problem” (and thisis the general intuition behind any type of Turing reductions between
problems) as demanding as possible. Therefore, Selman’s definition template is the right
and natural approach to reducibilities between promise problems.

Definition 3.4.4  Let C be any class of promise problems.

Bp.c< {(Q,R)‘ (3(S,T) € C) (3p € IPal) (VA € solns(S, T)) }

(3B € solns(Q, R)) (Vx) [Pryenly [ xs(x) = xa(x,y)] > ]

Lemma 3.4.5 below says that for all classes K closed under truth-table reductions, the
(in general less flexible) “ operator-based access’ to K is as powerful as accessing K via
the corresponding oracle machines. That is, using the notations of Part 4 of Remark 2.3.2
on page 12 and instantiating our assertion to the case of the FEwW and the SP operator, if
MY (K) C K, then RFP(K) = FewP* and RSP(K) = SPP*. We stress that this claim
holdstrue for many more polynomial-time operatorsthan only FEw or SP; infact, it applies
to any polynomial-time operator defined in this thesis. Lemma 3.4.5 will be applied in the
upcoming proof of Theorem 3.4.6, and it will also be useful in several places of Chapter 4.
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Lemma3.4.5 Let K beany classof setsclosed under truth-table reductions. Then,
FewP* =Few- K and SPP* =SP. K.

Proof. ~ We will only prove FewP* = Few - K, as the other equality can be shown
analogously. Theinclusion FEw - KK C FewP" is obvious, as a FewP oracle machine on
input x, in order to mimic the acceptance mechanism of FEw - IC, simply generates all
strings of length p(|x|) for some suitable polynomial p, queries“(x,y) € K?' on each path
generated, and acceptsif and only if the answer is*“yes”

Conversely, let L € FewP" via some FewP oracle machine M with oracle A € .1°
Define a set B of al strings (x,y) suchthat y = (w, q1, as, ..., dx, ax), wherek € FP
dependson x, w isan accepting computation path of M oninput x with queriesqy, ... , qx,
and ay, ..., ay arethe correct answers to these queries. Then, B truth-table reducesto A
andisthusin IC. Sincefor each x, [y| = q(|x|) for some q € IPol and the number of strings
y such that (x,y) € B ispolynomialy bounded in |x|, B witnessesthat L € FEw - . O

Theorem 346 SPPHM C BP- SPP.
Corollary 3.4.7 SPPP™ C BP- SPP.

Proof of Theorem 3.4.6. Let L be any set in SPP™. By Lenma 3.4.5, L € SP- PH.
Then, there exists a function g € GAP - PH such that g(x) = xi(x) for each x. Since
each GAP - PH function can be represented as the difference of a NUM - PH function
and an FP function (thisis a straightforward generalization of the corresponding result for
GapP [FFK94]), there exist aset A € PH, an FP function f, and a polynomial p such that
for eachx € X*,

f(x)+1 ifxel

Iyl (x,y) € A Ayl =p(xD}|| = { f(x) fx &L

Fix any x and y with |[y| = p(|x|). By Lemma 3.4.1, for A € PH, there exist a function
F € GapP and a polynomial r such that

Prewy W Zyy(W)] >

)

MW

OAs in the case of UPOMs, whether M is a FewP oracle machine depends crucially on its oracle. So, to
be definite, L = L(M*) € FewP~.
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wherethe predicate Z, ,(w) is defined on (X)) by
Zey W) Z (%, 1) € A &= Fx,u,w) =1) A ({x,y) € A &= F(x,y,w) =0),

For any x and w, with |[w| = r(|x|), define

Glx,w) E—f(x)+ Y Flx,y,w).

y:lyl=p(lxI)

By the closure properties of GapP [FFK94], we clearly have G € GapP. Now define the
promise problem (Q, R) by

df

Q = {(x,w)[G(x,w) €{0, 1} A\ w| =r(x[)},

R L (W) [Glx,w) =1 A Jw|=r(Ix])}.

Clearly, (Q,R) € SPP. Let S be any solutionto (Q, R). For fixed x and y and for any
w € £ for which Z, , (w) istrue, it holdsthat x € L implies G(x,w) = 1,andx ¢ L
implies G(x,w) = 0. That is, if w satisfies Z, ,(w), then (x, w) € Q, and thus,

x €L & xs(x,w) =xr(x,w) = 1.

It follows that

~lw

Pregxy W Ixe(x) = xs(x, W)] > Pryx) W | Zyy(w)] >

Hence, (X*,L) € BP- SPP. This completesthe proof. O

We conclude this section with the remark that an easy modification of the above proof
establishes aslight generalization of Corollary 3.4.7: For classes KC which are closed under
padding, join, and complementation,

SP-BP-K C BP- SP - K. (3.3)

In recent years, much attention has been paid to switching operators, for this—besidesbeing
interesting in its own right—yields new insightsinto the structure and power of hierarchies,
suchasPH, built upon operators. In particular, itisknownthat Op-BP-XC C BP-Op-C for any
operator Op chosen from {3,V, C G=, @} ([TO92, Tod91, RR91], see the survey [Schol]).
However, the “switch” between the BP and the SP operator stated in (3.3) above is the
best result that can be proven by current techniques. The question of whether (3.3) can be
strengthened to Op- BP- KL C BP- OP- I, where Op is either SP or SP, remains open.
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Chapter 4

Upward Separ ation for FewP and
Related Classes

4.1 Introduction

A main task in complexity theory is to prove collapses or separations between complexity
classes, or, if this doesn’t succeed (asis often the case), to provide structural consequences
from some collapse or separation. The techniques of upward and downward separation
deal with the link of small and large classes: downward separation typically showsthat the
separation of large classes is downwards translated to smaller ones (e.g., if some level of
the polynomial hierarchy differs from the succeeding one, then all smaller levels form a
strict hierarchy [Sto77, MS72]), whereas upward separation results state that if small (i.e.,
polynomial-time) classes differ on sets of small density such as sparse or tally sets, then
their exponential-time counterparts are separated. The first results of this kind are due to
Book who has shown that E = NE if and only if there exist tally setsin NP — P [Boo74]
(see Lemma 4.2.2), and to Hartmanis et a. who have shown that E # NE if and only if
there exist sparse setsin NP — P [Har83, HIS85]. Any class sharing with NP this property
w.r.t. sparse setsis said to possess (or to display) upward separation.

In contrast to the NP case, several results have been established that reveal thelimitations
of the upward separation technique by showing that certain classes do not robustly (i.e.,
with respect to all oracles) display upward separation (we will say those classes “defy”
upward separation). Hartmanis, Immerman, and Sewelson have shown that the upward

47
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separation technique fails for coNP relative to an oracle [HIS85], and Hemaspaandra and
Jha provided relativizations in which the promise classes BPP, R, and ZPP defy upward
separation [HJ93]. They posed the question of whether one can prove similar failings
regarding upward separation for other promise classes, and even the non-promise class PP.
Allender constructed an oraclerelativeto which | .., DTIME[2°?"] = .., NTIME[2¢*"]
and yet NP — P contains extremely sparse sets [All91] (see also [AW90]). In addition,
his paper presents some new—even though restricted—upward separation resultsregarding
the (promise) classes UP and FewP: there exist sets of constant (respectively, logarithmic)
density in UP — P (respectively, FewP — P) if and only if the respective exponential-time
analogsdiffer [All91]. Thenatural question ariseswhether or not, in FewP— P, the existence
of log-sparse sets is equivalent to the existence of sparse sets; Allender suspected that this
equivalence does not robustly hold [All91]. In this chapter, we refute this conjecture by
showing that FewP does robustly display upward separation. In fact, this follows from a
more general result (Theorem 4.3.6) that provides a ssmple sufficient condition for a class
to possess upward separation:! all the classis required to satisfy is closure under the FEw
operator (defined in Section 4.3). Asaconsequence, upward separation results are obtained
for avariety of known counting classes, including &P, coGP, SPP, and LWPP. In contrast
to the work of Hemaspaandra and Jha [HJ93], who gave the first examples of promise
classes that fail to robustly display upward separation, we show that this behavior is not
typical for promise classes in general by providing the first examples of promise classes,
specifically FewP, SPP, and LWPP, that do have upward separation.

Buhrman, E. Hemaspaandra, and Longpré's tally encoding of sparse sets, introduced
to prove the surprising result that any sparse set conjunctively truth-table reduces to some
tally set [BHL] (see[Sal93] for an aternative proof and [Sch93] for another application of
their technique), is central to the proof of our main result. Buhrman, E. Hemaspaandra, and
Longpré’s coding of a sparse set improves upon the one used by Hartmanis, Immerman,
and Sewelson [HIS85] in order to establish (and to apply to NP) the upward separation
technique.

LAnother structural sufficient condition for a different type of upward separation (giving results of the
form: “NP — BPP contains sparse setsif and only if NE € BPE") is observed in [HJ93]. Unlike our results,
those are in fact established via the technique of Hartmanis et a. [Har83, HIS85].
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4.2 Preiminaries

The upward separation technique relates certain structural properties of polynomial-time
complexity classes to their “exponential-time analogs.” Adopting the notation of [HJ93],
we can precisely formalize such a coupling of classesin aunifying way.

Definition 4.2.1 [HJ93]

1. A <¢ Bif A exponential-time(i.e., | .., DTIME[2°"]) many-one reduces to B.

c>0

2. A gf;h «ea BIf A <P Bviaareduction f that isexponentially length-decreasing (i.e.,
(3c > 0) (Vx: x| > 2) [2F) < [x]D).

3. We say that a pair of classes (A, B) is an associated pair if ¢ (A) € B and
9%21, eEd(B) c A.

Clearly, (P, E) is an associated pair. Now consider any class K that is defined
via a certain acceptance mode of NPMs (for example, think of any I chosen from
{NP, FewP, &P, PP, GP, SPP}). Then, the associated exponential-timeanalog, £, isdefined
viathe same acceptance mechanism in terms of 2°™-time bounded NTMs—notationally, £
thus differs from K just in the extension “E” rather than “P” indicating the different time
bound. For example, (NP, NE), (FewP, FewE),? (&P, ®E), (PP, PE), (GP, G=E), and
(SPP, SPE) all are associated pairs.

Given any set L C X*, we can prefix its strings x by a 1 and then interpret as natural
numbersbin(1x) in binary representation (see[Boo74, Har83]), thus converting L to atally
Set:

tally(L) & (0P |x ¢ 1),

Conversely, any tally set T can be transformed into a set of stringsover X:
bin(T) £ {x |01 ¢ T}

containing the same information as T in “logarithmically compressed” form. Clearly, for
any set L, bin(tally(L)) = L. Using the above notations, the key observation Book’s results

2 The promise of a FewP machine to have at most polynomially many accepting paths translates in the
FewE case to the promise of having at most 2°(™) accepting paths, which till are few compared with the
double-exponential total number of paths an exponential-time NTM can have [AR88].
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essentially draw upon [Boo74] can be stated asfollows: Forany set L C ©*, L <¢ tally(L)
and tally(L) gﬂl‘ «ta L. For completeness, the straightforward generalization of Book’s
results about (NP, NE) to every associated pair containing (P, E) is presented.

Lemma4.22 IfPC K and (K, £)isanassociated pair, then K — P containstally sets
if andonly if £ # E.

Proof. Since (K, £) and (P, E) are both associated pairs, we have R¢ (K) C L,
Ry ealL) SR (P) CEandR], 4(E) € P. Assume£ # E,andlet L C I* besome

m, eld m
setin £ — E. Then, taly(L) <} 4 Limpliestaly(L) € K. Supposetaly(L) € P. Then,
L <¢ tally(L) impliesL € E, acontradiction. Thus, thereexistsatally set T = tally(L) in
K—P. Conversely, let T besometally setin —P. A similar argument asabove—now using
that 5, (K) € £ and R}, 4 (E) € P—shows that the binary encoding of T, L = bin(T),

isin L — E. O

4.3 Upward Separation Results
Recall from Chapter 2 the definition of the FEw operator.

Definition 4.3.1  Let K be any polynomial-time bounded complexity class. A set Lisin
Few - IC if and only if thereexist aset A € I and polynomialsp and q such that for every
x € X,

1 [yl {x,u) € AA yl=p(x)}H < q(x]),and
2 xel & [{yl{xy)eAAyl=plxD} >0.

In this section, we provide a structural sufficient condition for upward separation. \We
show that any polynomial-time bounded complexity class K that is closed under the FEw
operator possesses this property.

Clearly, FEW - P = FEW - UP = FEW - FewP = FewP. Furthermore, FEW - K C FewP*
for any class . By Lemma3.4.5 from the previous chapter, if K isclosed under truth-table
reductions, then we even have FewP* = Few - K.

Note that Definition 4.3.1 doesn’t work for exponential-time bounded classes; in par-
ticular, FewE and FEw - E are probably not the same (see Footnote 2). Aswe'll apply the
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FEw operator to polynomial-time bounded complexity classes only, however, this causes
no problems here.

In this chapter, we focus on the following (promise and non-promise) counting classes:
UP, FewPR, &P, PP, G, SPP, and LWPP. Below we summarize the known relations among
these classes and state some known propertiesto be applied in the proof of Corollary 4.3.7.

Fact 4.3.2 1. UPC FewP C NP C coGP C PP.
2. FewP C SPP C LWPP C GP C PP.
3. SPP C @P.
4. [PZ83,FFK94] &P and SPP are self-low.

5. [FFK94] SPP-P = LWPP.

Remark 4.3.3 1. All theresultsin Fact 4.3.2 relativize, i.e., they hold relative to every
oracle. Note that the inclusions given in this fact straightforwardly trandlate into
operator notation. For instance, FEw - KL C 3 - K holdsfor any class K. The proof of
the self-lowness of ©P is due to Papadimitriou and Zachos [PZ83]. Using a similar
technique, Fenner, Fortnow, and Kurtz have shown this property to hold for SPP as
well [FFK91].

2. As a sidenote, Kobler, Schoning, and Toran proved the interesting result that SPP
contai nsthe graph automorphism problem and LWPP contai nsthe graph isomorphism
problem [KST92]. This combined with the results of Fact 4.3.2 implies that these
two problems are low for various counting classes such as GP and PP.

3. In[RRW94], we claimed that, among several other classes, the promise class LWPP
is closed under the FEw operator and thus displays upward separation. Though this
resultindeedisvalid, wenote herethat the proof givenin[RRW94] isnot correct, since
the proof that LWPP is self-low (claimed in [FFK91] and referred to in [RRW94])
is not correct. That is, referring to Fenner, Fortnow, and Kurtz's claim that the
proof of the self-lowness of SPP can be modified so as to establish the self-lowness
of LWPP [FFK91], we conclude in [RRW94] that LWPP is closed under the FEW
operator, and therefore displays upward separation. In the journal version [FFK94]
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of their paper, however, Fenner, Fortnow, and Kurtz withdraw their claim that LWPP
was self-low, reasoning that the way LWPP is relativized causes problems. On the
other hand, they notice that the self-lowness proof for SPP can indeed be modified
so as to establish the weaker claim stated in Part 5 of the above fact, which already
sufficesto provethat FEw - LWPP = LWPP, since clearly FEw - LWPP C SPP-VFP by
Part 2 of Fact 4.3.2, Lemma 3.4.5, and the fact that LWPP is closed under truth-table
(and even Turing) reductions dueto Part 5 of Fact 4.3.2. A corrigendum to [RRW94]
has been sent to the journal Information Processing Lettersin April, 1995.

The fact that LWPP may fail to be self-low in the machine-based setting notwith-
standing, thiscorrigendumin addition provesthat in the operator-based setting, LWPP
indeed is “self-low,” i.e.,, LWPP is closed under the Lwp operator, which is defined

by

Lwp- K i{LI (If € GAP-K)(3g € FP, g : IN — INT) (Yw) [g([w]) - xr (W) = f(w)]}.

Below we give a short description of Buhrman, E. Hemaspaandra, and Longpré'stally
encoding of sparse sets (see[BHL] for some algebraic background that explainsthe specific
choice of the parameters), who introduced this coding to prove the surprising result that
any sparse set S conjunctively truth-table reduces to the tally set BLS(S). Their coding is
central to the proof of our main result (Theorem 4.3.6).

Definition 4.3.4 (BL Sencoding of sparsesets) [BHL] Let S beany sparse set of density
d for somepolynomial d. For fixedn > 0, definer(n) & [%] andlet p,, 4 bethesmallest
prime larger than r(n) - d(n). Consider the finite field GF(p. q) with p,, 4 €lements. As
each polynomial over GF(p, q4) of degree < r(n) can be represented by its r(n) + 1
coefficients, it may beviewed asan (r(n) + 1)-digit number in base p,, 4. Thus, each string

x € X" corresponds to some polynomial

dt

A (@) = Xo(m) @™ + Xy ()10 ™+ b xga + %0,

where x,() - - - Xo IS the representation of x in base p,, ¢ with leading zeros. To encode the
length n strings of S, define the nth segment of thetally set BLS(S) a Unzo T.(S) by

To(8) £ {0l | 0 € GF(pna) A x €S}
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Lemma4.3.5 Forany class K, if S € SPARSEN K, then BLS(S) isataly setin FEw - K.

Proof. LetS beany sparse set in IC of density d for some polynomial d. Consider the
following algorithm for BLS(S): On input 0™®®) guess a string x of length n, compute
T(n) and pn 4 in polynomial time, and verify a € GF(p,q) and qx(a) = b. If thisis
not the case, then regject, otherwise simulate the X machine for S on input x and accept
accordingly. Since there are only a polynomia number of stringsin S=™, this shows that
BLS(S) € Few - K. a

Theorem 4.3.6 Let (K, £) be an associated pair such that P C K and FEw - K = K.
Then, K — P contains sparse setsif and only if £ # E.

Proof. The“if” part holdsby Lemma4.2.2. For proving the “only if,” we show the con-
trapositive: the supposition £ = Eforcesall sparse setsfrom iC into P. Suppose £ = E, and
let S beany sparsesetin K. By Lemma4.3.5,BLS(S) € FEw - K = K. Thus, bin(BLS(S))
isin £, which equals E by our supposition. Hence, tally(bin(BLS(S))) = BLS(S) isin P,
and since S conjunctively truth-table reducesto BLS(S), it followsthat S € P. a

Corollary 4.3.7 Let K beany of the classes FewP, NP, coGP, &P, SPP, or LWPP, and
let (IC, £) bethe respective associated pair. Then, (IC, £) displays upward separation, that
is, K — P contains sparse setsif and only if £ # E.

Proof. By Theorem 4.3.6, it suffices to show that each of the classes K considered
is closed under the FEw operator. This is easily observed for FewP. For £ = NP and
K = coGP, the result follows from the well-known or obviousfactsthat FEw - K C 3 - I,
3. NP = NP [Sto77, MS72], and V- GP =GP (see, eg., [Tod9l]). Thus, we have
FEwW - NP C 3- NP = NP and FEw - coGP C 3 - coGP = coV - GP = coGP. If K ischo-
sen from {@®P, SPP, LWPP}, then Lemma 3.4.5 and the relativized version of Fact 4.3.2
imply FEW - K C FewP* C K* = K, since any class which is self-low, clearly is closed
under truth-table (and even Turing) reductions.® O

Notethat, intheabove proof, thereisnothing special about themod 2 defining ®P[PZ83,

GP86]—all we need isits self-lownessand that FewP C &P [CH90]. Thus, theresult holds
aswell for al classes Mod, P (defined in [CH90, BG92, Her90]), for prime p.

SRegarding LWPP, see the discussion in Remark 3.
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4.4 Conclusionsand Open Problems

We have presented several new upward separation results contrasting recently discovered
results about some promise classes that fail to have upward separation in all relativized
worlds. Asanimmediate consequence, this, combined with the fact that equality of classes
obeys standard upward tranglation, yields relativizations separating any two classes that
differ in their property of displaying or defying upward separation, e.g., BPP* # oP?*,
FewP* #£ ZPP*, etc., where A is the oracle constructed in [HJ93]. More precisely, the
proof of, e.g., (3A) [BPP* £ @P*] isasfollows. Suppose BPP® = @P® for all oracles B.
Then, by standard padding arguments, BPE® = @EP for al oracles B. But there exists
an oracle A (constructed in [HJ93]) such that BPE* = @E* = E* and yet BPP* = oP*
contains sparse sets not in P*, which contradicts that, by the relativized version of Corol-
lary 4.3.7, ®P* — P* lacks sparse sets if ®E* = E*. Observe also that Corollary 4.3.7
adds “FewE # E” to Allender and Rubinstein’s [AR88] list of characterizations of the ex-
istence of sparse setsin P that are not P-printable [HY 84], a notion arising in the study of
generalized Kolmogorov complexity and data compression.

In particular, we have invalidated the conjecture that a class must not be defined in a
promise-like way to possess upward separation by giving the counterexamples of FewP,
SPP, and LWPP. However, our technique does not seem to apply to the promise classes
UP or NP coNP, and neither does it seem to apply to the non-promise classes PP or GP.
Although Theorem 4.3.6 immediately gives upward separation results for some exotic
classes such as FEw - PP or FEw - GP that are trivially closed under the FEw operator, it
does not apply to PP or GP itself, as these classes are unlikely to satisfy the assumption
of the theorem. For instance, supposing PP were closed under the FEw operator, then the
closure of PP under truth-table reductions [FR91] implies P* C FewP™ = FEw - PP = PP
by Lemma 3.4.5, thus settling the major open question of whether PPis closed under Turing
reductions. Likewise, FEw - UP = UPisequivaent to FewP = UP, another important open
problem.

Regarding PP, all we can proveisthefollowing weak result: If BPP — P contains sparse
sets, then PE # E.  For proving the contrapositive, consider any sparse set S € BPP.
By Lemma 4.3.5 and since FewP C PP and BPP is low for PP [KST*93], we have
BLS(S) € FEW - BPP C PPP™ = PP. Then, as in the proof of Theorem 4.3.6, the hy-
pothesis PE = E impliesthat S € P. Clearly, this appliesto every class that islow for PP.
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Regarding GP, we conjecture that (unless closed under complementation) it resembles
coNP in that it also fails to robustly have upward separation, as is suggested by the fact
that their respective classes of (set-wise) complements, coGP and NP, possess this property
jointly.
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Chapter 5

Multi-Selectivity and
Complexity-L owering Joins

5.1 Introduction

Selman introduced the P-sel ective sets (P-Sel, for short) [Sel 79] asthe complexity-theoretic
analogs of Jockusch’s semi-recursive sets [Joc68]: a set is P-selective if there exists a
polynomial-time transducer (henceforward called a selector) that, given any two input
strings, outputs one that islogically no lesslikely to be in the set than the other one. There
has been much progressrecently in the study of P-selective sets (seethe survey [DHHT94]).
In this paper, we introduce a more flexible notion of selectivity that allows the selector to
operate on multiple input strings, and that thus generalizes Selman’s P-selectivity in the
following promise-like way: Depending on two parameters, say i and j withi >j > 1, a
set Lis(i,j)-selectiveif thereis aselector that, given any finite set of distinct input strings,
outputs some subset of at least j elements each belonging to L if L contains at least 1 of the
input strings; otherwise, it may output an arbitrary subset of the inputs.

This hierarchy of generalized selectivity classes (denoted by SH) is studied in Sec-
tion 5.2. First we show that only the difference of i and j is relevant in the above definition
of (1,j)-selectivity: aset Lis(i,j)-selectiveif andonly if Lis(i—j + 1,1)-selective. Let
S(k) denote the class of (k, 1)-selective sets. Clearly, S(1) = P-Sel and for each k > 1,
S(k) € S(k+ 1). We further show that SH is properly infinite, and we relatedly prove that,
unlike P-Sel, none of the S(k) for k > 2 is closed under <P -reductions, and also that sets

57
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in S(2) that are many-one reducible to their complements may already go beyond P, which
contrastswith Selman’sresult that aset A isinPif andonly if A <P, A and A isP-selective
[Sel79]. Consequently, the class P cannot be characterized by the auto-reducible setsin any
of the higher levels of SH.

Ogihara[Ogi94] has recently introduced the polynomial-time membership-comparable
(P-mc, for short) sets as another generalization of the P-selective sets. Since P-mc(k)
(see Definition 5.2.10) is closed under <Y_,,-reductions for each k [Ogi94], it is clear that
Ogihara s approach to generalized selectivity isdifferent from ours, and in Theorem 5.2.12,
we completely establish, in terms of incomparability and strict inclusion, the relations
between his and our generalized selectivity classes. In particular, since P-mc(poly) is
contained in P/poly [Ogi94] and SH is (strictly) contained in P-mc(poly), it follows that
every setin SH haspolynomial-sizecircuits. Ontheother hand, P-sel ective NP setscan even
be showntobeinLow, [KS85]. Sincesucharesultisnot known to hold for the polynomial-
time membership-comparable NP sets, our Low,-ness results in Theorem 5.2.16 are the
strongest known for generalized selectivity-like classes.!

Selman proved that NP-compl ete sets such as SAT cannot be P-selective unlessP = NP
[Sel79]. Ogihara extended this collapse result to the case of certain P-mc classes strictly
larger than P-Sel. By the inclusions stated in Theorem 5.2.12, this extension applies to
many of our selectivity classes as well; in particular, SH cannot contain all of NP unless
P=NP.

To summarize, this demonstrates that the core results holding for the P-selective sets,
and proving them structurally ssmply, also hold for SH.

An even stronger motivation for introducing and studying generalized selectivity is
given in Section 5.3, in which we establish a result that sharply contrasts with a known
result about P-Sel. Though P-Sel C EL,, we provethat not al sparse setsin SH arein EL».
This is the strongest known EL, lower bound, strengthening the result that P/poly, and
indeed SPARSE, is not contained in EL, [AH92]. The proof of this result also establishes
that EL, is not closed under certain Boolean operations such as intersection and union.
Relatedly, we provethat there exist setsthat are not in EL,, yet their join (marked union) is
in EL,. That is, in terms of extended |lowness, the join operator can lower complexity.

LA bit morecarefully rephrased, thissentencewould say: “... have been the strongest known for generalized
selectivity-like classes until Kobler extended them even further in [K6b95], simultaneously subsuming some
results of [ABG90, HNOS94].” See Footnote 4 on page 70 for more details.
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It is known that P-Sel is not closed under union or intersection [HJ]. However, in
Section 5.4, we provide an extended selectivity hierarchy that is based on SH and is large
enough to capture those closures of the P-selective sets, and yet, in contrast with the P-mc
classes, is refined enough to distinguish them.

5.2 A Basic Hierarchy of Generalized Selectivity Classes

5.2.1 Structure, Properties, and Relationshipswith P-mc Classes

Before we define our generalized concept of selectivity, atechnical remark isin order. Each
selector function considered in this chapter is computed by a polynomial-time transducer
that takes a set of stringsasinput and outputs some set of strings. Asthe order of the strings
in these setsdoesn’t matter, we may assumethat, without loss of generality, they aregivenin
lexicographical order (i.e., x1 <jex X2 <jex - - <jex Xm), @nd are coded into one string over
Y using our pairing function. As a notational convenience, we'll identify these sets with
their codings and simply write (unless a more complete notation is needed) f(xq,... ,Xm)
to indicate that selector f runson theinputsx, ... , x,, coded as (x1, ... , Xm)-

Definition 5.2.1  Let g, and g» be non-decreasing functions from IN* into IN* (hence-
forward called threshold functions) such that g; > g». S(g1(n), g»(n)) isthe class of all
sets L for which there exists an FP function f such that for each n > 1 and any distinct
input stringsys, ... , Yn,

1. f(yl) )yn) - {yl>--- )yn}’ and

We also consider classes fair-S(g1(n), g»(n)) in which the selector f is required to
satisfy the above conditions only when applied to any n distinct input strings each having
length at most n. Asanotational convention, for non-constant threshold functions, we will
use “expressionsin n,” and we use i, j, or k if the threshold is constant. The definition
immediately implies the following:

Fact 5.2.2 Let g1, g», and c be threshold functions such that g, > go.
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1. $(g1(n), g2(n)) € S(ga(n) +c(n), g2(n)) and

S(g1(n), g2(n) + c(n)) € S(gs(n), g2(n)).
Theseinclusions also hold for the corresponding fair-S classes.

2. If g1(n) = n forany n, then S(g1(n), go(n)) = fair-S(g1(n), g2(n)) = P(X*).

3. S(g1(n), g2(n)) C fair-S(g1(n), go(n)) C fair-Sin —1,1) if go(n) < ga(n) <n
for any n.

In particular, we are interested in classes S(1,j) parameterized by constants 1 and j.
Theorem 5.2.3 reveals that, in fact, there is only one significant parameter, the difference
of i and j. This suggests the simpler notation S(k) i S(k,1) for al k > 1. Let SH
denote the hierarchy | J,., S(k). For simplicity, we henceforward (i.e., after the proof of
Theorem 5.2.3) assume that selectorsfor any set in SH select exactly one input string rather
than a subset of the inputs (i.e.,, they are viewed as FP functions mapping into X* rather
than into P(X*)).

Theorem52.3 (Vi > 1) (Vk > 0) [S(i, 1) = S(i + k, 1 + k)]

Proof. For any fixedi > 1, the proof is done by induction on k. The induction baseis
trivial. Assume S(i,1) = S(i+k — 1,k) for k > 0. Weshow S(i,1) = S(i + k,1+ k).
For thefirst inclusion, assume L. € S(1, 1), and let f bean S(i+ k — 1, k)-selector for L that
exists by the inductive hypothesis. Given any distinct input stringsys, ... ,Ym, m > 1, an
S(i+ k, 1+ k)-selector g for L is defined by

g(yl .Y )i{ f({yly---,ym}—{l})U{Z} |ff(y1,,ym)7$®

Y otherwise,

where z € f(y1,...,ym) and Y is an arbitrary subset of {ys,...,ym}. Clearly, g € FP,
g, - »YUm) C{us, ..., ymh andif ||LN{ya,... ,ym}|| > i+ Xk, then g outputs at |east
1+ k strings each belongingto L. Thus, L € S(i + k,1+ k) viag.

For the converseinclusion, let L € S(i + k, 1+ k) viag. Todefinean S(i + k — 1, k)-
selector f for L, let i + k strings zy, . .. , zi.x € L (w.l.0.g., L isinfinite) be hardcoded into
the machine computing f. Givenys, ... ,ym asinput strings, m > 1, define

o ) 9(Ys,...,Ym) if{z,...,ziid S{ys, ..., Ym}
f(yb . >ym) - .
g(y,...,Ym,z) —{z} otherwise,
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wherez € {Zlv e aZ"L—I—k}_{yl» e )ym} Clearly, fe FP1 f(ylv e aym) g {yl) e )ym}’
and if |[LN {yg,...,ym}|| > 1+ k — 1, then f outputs at least k elements of L. Thus, f
witnessesthat L € S(i + k — 1, k), which equals S(i, 1) by the inductive hypothesis. O

Fact 524 1. S(1) = P-Sdl.
2. (Vk > 1) [S(k) € S(k+1)].

Proof. By definition, we have immediately Part 2 and the inclusion from left to right in
Part 1, as in particular, given any pair of strings, an S(1)-selector f is required to select a
string (recall our assumption that all S(k)-selectors output exactly one input string) that is
no less likely to be in the set than the other one. For the converse inclusion, fix any set of

inputs ys, ... ,ym, m > 1, and let f be a P-selector for L. Play a knock-out tournament
among the stringsys, ... , ym, Where x beats y if and only if f(x,y) = x. Lety,, bethe
winner. Clearly, g(ys, .. . , Ym) = y,, Witnessesthat L € S(1). O

Recall that, by convention, the “n — 1” in fair-S(n — 1, 1) denotes the non-constant
threshold functionsg(n) 91— 1. Nextwe provethat SH isproperly infiniteand is strictly
containedinfair-S(n—1, 1). Fix anenumeration{f;};»1 of FPfunctions, and definee(0) L)
and e(k) £ 260D for k > 1. Foranyi> Oands < 260 let Wy & {wiy,... ,wis)
be an enumeration of the lexicographically smallest s stringsin £¢® (this notation will be

used also in Section 5.4).

Theorem 525 1. Foreachk >1,S(k) C S(k+ 1).
2. SH c far-S(n — 1,1).

Proof. 1. For fixed k > 1, choose k + 1 pairwise distinct strings by, . . . , by of the same
length. Define

AE ({050,050} = LR, v}

i>1

i.e, for eachi > 1, Ay canlack at most oneout of thek + 1 strings b&™ ..., bW,

An S(k+ 1)-selector g for Ay isgivenin Figure 5.1 below. W.I.0.g., assume each input
inY ={yi1,...,ym) to be of the form bfﬁ) forsomej € {0,... ,k}andi € {iy,...,1s},
wherel <i; <--- <igsands < m. Clearly, g(Y) € Y. Letn = [{(y1,... ,ym)|.- Since
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Description of an S(k + 1)-selector g.
input Y ={ys,...,Ym}
begint:=s — 1,
whilet > 1do
z={yeY|Eeo,. .. y=0"1}—{f o™, . bt}
if Z # () then output some element of Z and halt

gdset:=t—1
end while
output an arbitrary input string and halt
end

End of description of g.

Figure5.1: An S(k + 1)-selector g for Ay.

there are at most m while loops to be executed and the polynomial-time transducers f;,,
t < s, run on inputs of length at most ¢ - loge(is) for some constant ¢, the runtime of g
on that input is bounded above by some polylogarithmic function in n. Then, there is a
polynomial in n bounding g’s runtime on any input. Thus, g € FP. If some element y is
output during thewhileloop, theny € Ay. If g outputsan arbitrary input string after exiting
the while loop, then no input of the form bf(“), t < s,isin Ay, and since Ay has at most
k + 1 strings at each length, we have [|Ax N Y|| < k if g(Y) & Ax. Thus, Ay € S(k+ 1)
viag.

On the other hand, each potential S(k)-selector f;, givenbg'”, . .., bE™ asinput strings,
outputs an element not in Ay though k of these stringsarein Ay. Thus, Ay & S(k).

2. Fixany k > 1, and let L € S(k) viaselector f. For each of the finitely many tuples
Y,...,yesuchthat { < kandy;| < {1 <1< letzy, o, besomefixed string in

LN{yy,...,y.}if thissetisnon-empty, and an arbitrary string from{yg, ... ,y,} otherwise.
L et these fixed strings be hardcoded into the machine computing the function g defined by

{Zyg ynt ifn<k
O(Us, ... yyn) L4 ] _
{f(ys,...,yn)} otherwise.

Thus, L € fair-S(n — 1, 1) viag, showing that SH C fair-S(n — 1, 1).
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The strictness of the inclusion is proven as in Part 1 of this proof. To define a set
A ¢ SH we have here to diagonalize against all potential selectors f; and all levels of SH
smultaneously. That is, in stage i = (j, k) of the construction of A g Uis1 At we will
diagonalize against f; being an S(k)-selector for A. Fixi = (j, k). Recall that Wi, xy1isthe
set of the smallest k + 1 length e(i) strings. Note that 26 > k 4 1 holdsfor each 1, since
we can w.|.0.g. assume that the pairing function satisfiesu > max{v, w} for al u, v, and w
withw = (v, w). Define A; £ Wi i1 — {f;(Wiria)}. Assume A € SH, i.e,, there exists
somet suchthat A € S(t) viasome selector fs. But this contradicts that for r = (s, t), by
construction of A, we have ||A N W, 4] > t, yet f,(W, ;1) either doesn’t output one of
itsinputs (and is thus no selector), or fs(W,; ++1) ¢ A. Thus, A & SH.

Now we prove that A trivialy isin fair-S(n — 1, 1), as A is constructed such that the
promiseisnever met. By way of contradiction, supposeaset X of inputsisgiven, || X|| = n,
JANX||>n—1 and [x| < n foreachx € X. Let e(i) be the maximum length of the
stringsin AN X,i.e, AnNX=,_; A, NX. Letjandk besuchthati = (j, k). Since
(by the above remark about our pairing function) k 4+ 1 < i, we have by construction of A,

ei)—1<n—1<AnX| =] [JAnnX| < | |JAnll < (k+1)i<

whichisfaseforali > 0. Hence, A € fair-S(n — 1, 1). O

A variation of this technique proves that, unlike P-Sel, none of the S(k) for k > 2
is closed under <P -reductions. (Of course, every class S(k) is closed downwards under
polynomial-time one-one reductions.) We aso show that sets in S(2) that are many-one
reducible to their complements may already go beyond P, which contrasts with Selman’s
result that aset A isin Pif and only if A <P, A and A is P-selective [Sel79]. It follows
that the class P cannot be characterized by the auto-reducible sets (see [BVHT93]) in any of
the higher classesin SH. It would be interesting to strengthen Corollary 5.2.7 to the case
of the self-reducible sets, as that would contrast sharply with Buhrman, van Helden, and
Torenvliet’s characterization of P as those self-reducible setsthat are in P-Sel [BVHT93].

Theorem 526 1. Foreachk > 2, S(k) C P, (S(k)).

2. Thereexistsaset A in S(2) suchthat A <P, A andyet A ¢ P.

Corollary 5.2.7 Thereexists an auto-reducible set in S(2) that isnot in P.
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Proof of Theorem 5.2.6. 1. In fact, we will defineaset L € RP (S(2)) — S(k). By
Fact 5.2.4, the theorem follows. Choose 2k pairwise distinct strings by, ... , by of the
same length. Define L a A; U B, where

Ao {8 B RS, ) ¢ (5, )
' 0 otherwise,

P (R L RPN L L N R LRI
' 0 otherwise.

Clearly, each potential S(k)-selector f;, given b5 ... b2V asinput strings, outputs an
element not in L though |[L N {65, ... | bEWY|| > k. Thus, L ¢ S(k).
Now define a set

L' £ o5V 165" e U (vl il e L}

andanFPfunctiongby g(bf™) L bSif 1 < j < k,andg(bfV) L bfifk +1 < j < 2k,

and g(x) = x for all x not of theform b).e“) foranyi> landj, 1 <j < 2k. Then, we have
x € Lifandonly if g(x) € L' for eachx € X*, thatis, L <P L'

Now we show that L’ € S(2). Given any distinct inputs yi, ... ,yn (each having,
without loss of generality, the form bim or bffj)l for some1i > 1), define an S(2)-selector
asfollows:

Case 1. All inputs have the same length. Then, {ys,... ,yn} C {bf(”,biﬂ} for some
i > 1. Define f(ya,...,yn) to be bjm if bim € {y1,...,yn}, and to be bfﬁ)l
otherwise. Hence, f selectsastringin L' if [[{y1,... ,yn} NL'|| > 2.

Case 2: The input strings have different lengths. Let £ a max{lyil,...,[ynl}. By brute
force, we can decideintime polynomial in £ if thereis somestring with length smaller
than £ in L. If so, f selects the first string found. Otherwise, by the argument of
Case 1, we can show that f selects a string (of maximum length) in L’ if L’ contains
two of the inputs.

2. Let{M,}i>1 bean enumeration of all deterministic polynomial-time Turing machines.
Define

AZL00]i>1 A 00 g LM)IU{LD 1> 1 A 07D e (M)
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Assume A € Pvia M; for somej > 1. This contradicts that 0°0) € A if and only
if 0°0) ¢ L(M;). Hence, A ¢ P. Define an FP function g by g(0°")) g 1¢® and
g(1°®V) L etV for any i > 1, and for any x ¢ {0°¥), 1V}, define g(x) £ y, wherey isa
fixed stringin A (w.l.o.g., A # )). Clearly, A <? Aviag. A € S(2) followsasabove. O

Definition 5.2.8  For sets A and B, A <7 ; B if thereis an FP function f such that for
dlxeX*, (@ xe A & f(x) € B,and(b) x <& f(x).

Notethat asimilar kind of reduction was defined and was of usein [HHSY 91], and that,
intuitively, setsin {L |L gfn) « L} may be viewed as having a very weak type of padding
functions.

Theorem 529 IfLeSHandL <? .. L,thenL € P-Sdl.

—m, i

Proof. Let L <} , Lviaf, and let g be an S(k)-selector for L, for some k for which
L € S(k). A P-selector h for L is defined as follows: Given any inputs x and y, gen-
erate two chains of k lexicographically increasing strings by running the reduction f,
e, x = X1 <lex X2 <lex * ** <lex Xk ANA Y = Y1 <jex Y2 <jex * * * <lex Yk, Where x, = f(x),
x3 = f(f(x)), etc., and similarly for they;. To ensurethat g will run on distinct inputs only
(otherwise, g isnot obliged to meet requirements 1 and 2 of Definition 5.2.1), let z, ... , z;
beall they;'snotin{xy,...,xx}. Nowrung(xg,...,xx, z1,...,2z) and defineh(x,y) to
output x if g outputs some string x;, and to output y if g selects some string y; (recall our
assumption that S(k)-selectors such as g output exactly one string). Clearly, h € FP, and

if xoryareinL, thenat least k inputsto g arein L, so h selectsastringin L. O

Ogihara[Ogi94] has recently introduced the polynomial -time membership comparable
sets (see Definition 5.2.10 below) as another generalization of the P-selective sets. Since
P-mc(k) is closed under <7_,.-reductions for each k [Ogi94] but none of the S(k) for
k > 2isclosed under <P -reductions (Theorem 5.2.6), it is clear that Ogihara’'s approach
to generalized selectivity is different from ours, and in Theorem 5.2.12, we completely
establish, in terms of incomparability and strict inclusion, the rel ations between hisand our
generalized selectivity classes (see Figure 5.2).

Definition 5.2.10 [Ogi94] Let g be a monotone non-decreasing and polynomially
bounded FP function from IN to IN™".
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1. A function f is caled a g-membership comparing function (a g-mc-function, for
short) for A if for every x4, ..., xm Withm > g(max{|x4], ..., [xml}),

f(xla- .- axm) € {O> 1}m and (XA(Xl))- .- )XA(Xm)) 7é f(xl)- o )Xm)-

2. A set A is polynomial-time g-membership comparable if there exists a polynomial-
time computable g-mc-function for A.

3. P-mc(g) denotesthe class of al polynomial-time g-membership comparable sets.

4. P-mc(const) £ J{P-me(k) |k > 1}, P-mc(log) < (J{P-mc(f) | f € O(log)}, and
P-mc(poly) < [ J{P-mc(p) | p € IPol.

Remark 5.2.11  Wecan equivaently (i.e., without changing the class) requirein the defi-
nitionthat f(xq,... ,xm) # (xa(x1),...,xa(xm)) mustholdonly if theinputsxg, ... , Xm
happen to be distinct. Thisistrue becauseif thereare r and t with r # t and x, = x, then
f simply outputs alength m string having a“0” at positionr and a“1” at position t.

Theorem 5.212 1. P-mc(2) € fair-S(n — 1, 1).
2. Forany k > 1, S(k) ¢ P-mc(k + 1) and S(k) ¢ P-mc(k).?
3. S(n—1,1) C P-mc(2).
4. fair-S(n —1,1) ¢ P-mc(n) and fair-S(n — 1,1) ¢ P-mc(n — 1).

Proof. First recall that {f};>1 is our enumeration of FP functions and that the set
Wi = {wi1,...,w;} collectsthelexicographically smallest s (s < 2¢V) stringsin £¢¥,
where function e isinductively defined to be e(0) = 2 and e(i) = 2¢(-" for i > 1. Recall
also our assumption that a selector for a set in SH outputs a single input string (if the
promise is met), whereas S(n — 1, 1) and fair-S(n — 1, 1) are defined via selectors which
output subsets of the given set of inputs.

1. Wewill construct aset A in stages. Letu; bethesmallest stringin Wi ¢ yNfi(Wieq)
(if this set isnon-empty; otherwise, f; immediately disqualifiesfor being afair-S(n—1, 1)-
selector and we may go to the next stage). Define A a Uis1(Wien) — {wi}). Then,

2This generalizes to k larger than 1 a result of Ogihara who proves that the P-selective sets are strictly
contained in P-mc(2) [Ogi94] aswell asthe known fact that P-Sel is strictly larger than P[Sel 79].
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P/poly

P-mc(poly)

P-mc(n)

P-mc(n-1)

fair-S(n-1,1 |
arS(n-1.1) P-mc(log n)

P-mc(const)

P-mc(4)
\
\
\
\
\
----------- X P-mc(3)
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\
\
\
----------- P-mc(2)
S(n-1,1)
P-Sel = §(1
.y — drictinclusion
P = P-mc(1) —---- incomparability

Figure 5.2: Inclusion relationships among S, fair-S, and P-mc classes.
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A ¢ far-S(n — 1, 1), sincefor any i, f;(W; ¢(1)) outputsastring not in A although e(i) —1
of these inputs (each of length e(1), i.e., the inputs satisfy the “fair condition”) arein A.
For defining a P-mc(2) function g for A, let any distinct inputsxy, ... ,x, withm > 2

be given. If thereis some x; such that x; & W (i) for any 1, then define g(xa, ... ,xm) to
be0—110™7. If thereis somex; with |x;| < e(io), wheree(ip) = max{|x4l, ... , xm/}, then
computethebit x4 (x;) by bruteforceintimepolynomial ine(ip), and defineg(xy, ... ,%xm)

to be 0~ 1x4(x;)0™ 7. Otherwise (i.e., if {x1,... ,Xm} € Wiye(io): l€t g(x1,... ,%m) be
0™. Since, by definition of A, there is at most one string in Wi i,y that isnot in A, but
m > 2, wehaveg(xy,...,xm) # (xa(x1),...,xa(xm)). Thus, A € P-mc(2) viag.

2. Forfixedk > 1, let L € S(k) viaf. Define aP-mc(k + 1) function g for L that,
given distinct inputs x4, . . . , X, With m > k + 1, outputs the string D-01™ 7 if x; isthe
string output by f(x1,...,xm). Clearly, g(x1,...,xm) # (xt(x1),...,Xc(xm)), SiNCE
thereare at least k 1'sin V=101™ 7, and f(x4,... ,xm) = X; isthusastring in L. Hence,
L € P-mc(k + 1) viag, showing S(k) C P-mc(k + 1). By Statement 1, thisinclusion is
strict, and so is any inclusion to be proven below.

To show that S(k) Z P-mc(k), fix k strings by, . .. , by of the same length. Define

df e(i)
A =<b. L )
’ | andhasa“l” a positionj, 1 <j <k

i>2and f;(b5Y ... b)) € {0, 1+ }

Clearly, since f;(bSV ... bSY) = (xa (M), ..., xa (bEY)) for any i, no FP function
f; can serve as a P-mc(k) function for A. To define an S(k)-selector for A, let any inputs
Y1,...,Ym (W.l.0.g., each of the form bjem) be given, and let £ = max{|ya|,..., lyml}. AS
in the proofs of Theorem 5.2.5 and Theorem 5.2.6, it can be decided in time polynomial in
£ whether there is some string of length smaller than £ in A. If so, the S(k)-selector f for
A selects the first such string found. Otherwise, f outputs an arbitrary string of maximum
length. Since there are at most k strings in A at any length, either the output string isin
A,or||AN{ys,...,ym}|| < k. Thus, S(k) € P-mc(k). Statement 1 implies that as well
P-mc(k) Z S(k) for k > 2; the kth level of SH = |J,.; S(i) and of the hierarchy within
P-mc(const) are thusincomparable. )

3. Let L € S(n—1,1) viaselector f. Define a P-mc(2) function g for L as follows:
Given distinct input strings x4, ... , x, Withn > 2, g simulates f(x4, ... , x») and outputs
the string V101" if x; is any (say the smallest) string in f(xy, ... ,x,). Again, we can
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exclude one possibility for (xa(xi1),...,xa(x.)) via g in polynomia time, because the
S(n — 1,1)-promiseis met for the string P-101™ 7, and thus f must output astringin L.

4. Now we show that the proof of Statement 3 failsto some extent for the corresponding
fair-class, i.e., wewill show that fair-S(n—1,1) ¢ P-mc(n—1).3 A a U;>, Aiisdefinedin
stagesso that instaget, f; failstobeaP-mc(n—1) functionfor A;. Thisisensured by defin-
ing A; asasubset of thee(i) —1smallest stringsof length e (i), W (1)1, suchthatw; ; € A4
if and only if f;(Wj 4)-1) outputs a string of length e(i) — 1 and hasa“1" at position j.
Thus, A & P-mc(n — 1), since fi(wig, ..., Wieq)-1) = (Xa(Wit), ..., Xa(Wien)-1)) for
anyi> 1.

To see that A € fair-S(n — 1,1), let any distinct inputs ys, ... ,yn be given, each
having, w.l.0.g., length e(i) for some i, and let e(ig) be their maximum length. As before,
if there exists a string of length smaller than e(io), say y;, then it can be decided by brute
forcein polynomial timewhether or not y; belongsto A. Defineafair-S(n—1, 1)-selectog
to output {y;} if y; € A, and to output any input different fromy; if y; ¢ A. Thus, either
the string output by g does belong to A, or ||[A N{y1,...,yn}|| <n —1. On the other
hand, if all input strings are of the same length e(ip) and {y1, ... , Un} C Wi e(ip)—1, then
the “fair condition” is not fulfilled, as e(ip) > m, and g is thus not obliged to output a
stringinA. If al inputs havelength e(ip) and{ya, . .. , Un} € Wi, ei,)—1, then by the above
argument, g can be defined such that either the string output by g does belong to A, or
IIA N{ya,...,yn}|| < — 1. Thiscompletesthe proof of A € fair-S(n — 1,1).

Finally, weshowthat fair-S(n—1, 1) C P-mc(n). LetL € fair-S(n—1, 1) viaselector f.
Letys,...,yn beany distinctinput stringssuch thatn > max{|y4|, ..., lynl}i.e, the“fair
condition” is now satisfied. Define a P-mc-function g for L which, on inputsys, ... ,yn,
smulates f(ys, . .. , Yn) and outputs the string V101" if f selectsy;. Thus,

g(yl>' .- )UTL) 7é (XL(yl))- .. )XL(yn))>

andwe have L € P-mc(n) viag. O

3Thisis similar asin Part 2 although the proof now rests also on the “fair condition” rather than merely
on the (n — 1)-promise. However, this “fair condition” can no longer “protect” fair-S(n — 1, 1) from being
contained in P-mc(n).
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5.2.2 Circuit, Lowness, and Collapse Results

This section demonstrates that the core results (i.e., small circuit, Low,-ness, and collapse
results) holding for the P-selective sets, and proving them structurally ssmply, also hold for
our generalized selectivity classes.

Since P-mc(poly) C P/poly [Ogi94] and fair-S(n — 1,1) is (strictly) contained in
P-mc(n), it follows immediately that every set in fair-S(n — 1,1) has polynomial-size
circuits and isthus in EL®3 (by Kobler’'s result that P/poly C ELO®3; [K6b94]). Note that
Ogihara refers to Amir, Beigel, and Gasarch, whose P/poly proof for “non-p-superterse’
sets (see [ABG90, Theorem 10]) applies to Ogihara’s class P-mc(poly) as well. On the
other hand, P-selective NP sets can even be shown to be in Low, [KS85], the second level
of the low hierarchy within NP. In contrast, the proof of [ABG90, Theorem 10] does not
give a Low,-ness result for non-p-superterse NP sets, and thus also does not provide such
aresult for P-mc(poly) N NP. By modifying the technique of Ko and Schoning, however,
we generalize in Theorem 5.2.16 their result to our larger selectivity classes.* The proof
of Theorem 5.2.16 explicitly constructs a family of non-uniform advice sets for any set in
fair-S(n — 1, 1), as merely stating the existence of those advice sets (which follows from
Theorem 5.2.13) does not suffice for proving L ow,-ness.

Note that some results of this section (e.g., Theorem 5.2.13) extend to the more genera
GC classesthat will be defined in Section 5.4. We propose as an interesting task to explore
whether all results of this section, in particular the Low,-ness result of Theorem 5.2.16,
apply to the GC classes.

Theorem 5.2.13 fair-S(n — 1,1) C P/poly.
Corollary 5.2.14  SH C P/paly.
Corollary 5.2.15 fair-S(n —1,1) C ELOs.

Theorem 5.216  Any setinNPNfair-S(n — 1, 1) isLows,.

4 Very recently, our generalization of Ko and Schoning’sresult that P-Sel N1 NP C Low, (and also other re-
searchers modificationsor generalizations of their result such as“Any P-cheatable NP setisLow,” [ABG9(Q],
or “Any NPSV-selective NP setisLow,” [HNOS94]) has been further extended by Kobler [K6b95]. The most
genera currently known Low,-ness result for NP sets having selector functions (in any selectivity concept
that has been considered in the literature) is stated in Kobler's paper as follows: “Any NP set that is strongly
membership comparable by NPSV functionsis Low,” [Kob95]. We refer to [Kob95, ABG90, HNOS94] for
the notations not defined in this footnote.
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Proof. LetL beany NP setinfar-S(n —1,1), and let f be a selector for L and N be
an NPM such that L = L(N). First, for each length m, we shall construct a polynomially
length-bounded advice A, that helps deciding membership of any string x, [x| = m, in L
in polynomia time. For m < 4, take A, & 1= as advice. From now on let m > 4 be
fixed, and let n besuchthat 4 < 2n < m.

Some notations are in order. A subset G of L=™ is called a game if ||G|| = n. Any
output w € f(G) is called a winner of game G, and is said to be yielded by the team
G — {w}. If [IL7™| < 2(n + 1), then simply take A, 4 1=m asadvice. Otherwise, A, IS
constructed in rounds. In round i, oneteam, t;, isadded to A,,,, and al winnersyielded by
that team in any game are deleted from aset B; ;. Initially, Bg isset to be L=™.

In moredetail, inthefirst round, all gamesof Bo = L=™, one after the other, arefed into
the selector f for L to determine all winners of each game, and, associated with each winner,
the team yielding that winner. We will argue below that there must exist at |east one team

yielding at least ((g)) winnersif N isthe number of stringsin L=™. Choose the “smallest”

(according to the (n)FéIeri ng <;e ON L=™) such team, t;, and add it to the advice A,,. Delete
from By all winnersyielded by t; and set B, to be the remainder of By, i.e.,

By £ By — {w | winner w isyielded by team t,},

and, entering the second round, repeat this procedure with all games of B; unless B,
has < 2(n + 1) elements. In the second round, a second team t,, and in later rounds,
more teams t; are determined and are added to A,,. The construction of A, in rounds
will terminate if ||Bym|| < 2(n + 1) for some integer k(m) depending on the given
length m. In that case, add By t0 A,,. Formally, A,, £ (Ufgl“) ti) U By(m), Where
Byxm) € L™™ contains a most 2(n + 1) elements, t; C L=™ is the team added to A,,, in
round i, 1 < i < k(m), and the bound k(m) on the number of rounds executed at length
m is specified below.

We now show that there is some polynomial in m bounding the length of (the coding
of) A, for any m. If L=™ has N > 2(n + 1) strings, then there are (%) gamesand ()
teams in the first round. Since every game has at least one winner, there exists one team
yielding at least N

) _N-n+1 N _N
(M) n 2n — m

n—1

winnersto bedeleted from By inthefirst round. Thus, thereremaininB, atmost N (1 — )
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elements after thefirst round, and, successively applying thisargument, By containsat most
N(1- Ti“)k elements after k rounds. Since N < 2™ and the procedure terminates if
IIBx|]| < 2(n + 1) for some integer k, it suffices to show that some polynomial k(m)
of fixed degree satisfies (1—£)“"™ < 2(n + 1)2-™. This follows from the fact that
lim ((1— %)mz)m =e ! < %impliesthat (1— %)mz isinO(2 ™). Asineach round
n—1 < m strings of length m are added to A, the length of (the coding of) A, isindeed
bounded above by some polynomial of degree 4.

Note that the set
df
C= {(X» Qx)

witnesses L € P/poly (Theorem 5.2.13), asclearly C € Pand L = {x| (x, aj) € C}.

Now we are ready to prove L € Low,. Let D € NP be witnessed by some NPOMs
N, and Ny, that is, D = L(NE(NZL)). Let q(£) be a polynomial bound on the length of all
gueries that can be asked in this computation on an input of length £. We describe below
an NPOM M and an NP oracle set E for which D = L(ME).

Oninput x, M guesses for each length m, 1 < m < q(|x|), al possible polynomially
length-bounded advice sets A, for L=™, simultaneously guessing witnesses (that is, an
accepting path of N on input z) that each string z in any guessed advice setisin L=™. To
check on each path whether the guessed sequence of advice setsis correct, M queriesits
oracle E whether it containsthe string (x, A1, ..., Aq(x)), Where

ajy isencoding of an advice A and x € By, Or (3t;)
[t; isateam of A}, and x belongsto or isyielded by t;]

(Fm:1<m < q(x[) (Fym : [Yml = m) (Fwm) Wi
< (%, A1, ..., Aq(xp) | iSan accepting path of N(y.,,), and yet y,, isneither a
stringin A, nor isyielded by any team of A ;]

isclearly aset in NP. If the answer is“yes,” then some guessed advice isincorrect, and M
rejects on that computation. If the answer is*“no,” then each guessed advice is correct for
any possible query of the respective length. Thus, M now can simulate the computation of
NE(NZ) on input x using the selector f and the relevant advice A, to answer any question
of N, correctly. Hence, D € NPV, 0

Ogiharahas shown that if NP C P-mc(c logn) for somec < 1, then P = NP[Ogi94].°

5In[Ogi94], this result is also established for certain complexity classes other than NP. In thisthesis, we
focus on the NP case only, however.



5.3. Extended Lowness and the Join Operator 73

Since by the proof of Theorem 5.2.12, fair-S(clogn, 1) C P-mc(clogn), ¢ < 1, we have
immediately the following corollary to Ogihara's result.

Corollary 5.2.17 If NP C fair-S(clogn, 1) for somec < 1, then P = NP.

5.3 Extended Lownessand the Join Operator

Essentially, the low hierarchy ([Sch83]; see Part 1 of Definition 2.3.5 on page 12) provides
a yardstick to measure the complexity of sets that are known to be in NP but that are
seemingly neither in P nor NP-complete.® In order to extend this classification beyond
NP, the extended low hierarchy ([BBS86b]; see Definition 2.3.5.2 on page 12) has been
introduced (see the surveys[K06b95, Hem93]). Theintuition isthat aset A that is placedin
the kth level of the low or the extended low hierarchy either contains no more information
than the empty set relative to the computation of a X} oracle machine, or A is so badly
organized that a X} oracle machineis not able to extract useful information from A. These
two hierarchies have been very thoroughly investigated in, e.g., [Sch83, KS85, BBS86b,
Sch88, Sch89, Ko91, AH92, ABG90, Koh94, LS94, HNOS94]. One main motivation in
these studies is to locate interesting problems (such as the graph isomorphism problem,
which is known to be low) and classes of problems (known extended low classes include
BPP, approximate polynomial time, the class of complements of sets having Arthur-Merlin
games, the class of sparse and co-sparse sets, the P-selective sets, the class of sets having
polynomial-size circuits (i.e., P/poly), etc.) in certain levels of the hierarchies and to prove
lower bounds to certify the optimality of the location obtained. Another motivation is to
explore and to better understand the structure of the hierarchies themselves and to relate
their properties to other complexity-theoretic concepts. For instance, Schoning has shown
that the existence of an NP-complete set (under any “reasonable” reducibility) in the low
hierarchy implies a collapse of the polynomia hierarchy [Sch83], and Long and Sheu
have proven that the extended low hierarchy is an infinite hierarchy [LS94]. This section
contributes to this | atter type of task.

SVery recently, Hemaspaandra, Wechsung, and this author have taken another approach to describe various
degreesof “simplicity” of NP setsby studying the classes of NP setsfor which al, or some, certificate schemes
(i.e., NP machines) accepting the set have always, or have infinitely often, easy certificates (i.e., polynomial-
time computable accepting paths) [HRW95].
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The following result establishes a structural difference between Selman’s P-selectivity
and the generalized selectivity introduced here: Though S(1) = P-Sel C EL,, we show
that there are sets (indeed, sparse sets) in S(2) that are not in EL,. Previoudly, Allender and
Hemachandra[ AH92] have shown that P/poly (and indeed SPARSE and coSPARSE) is not
contained in EL,. Theorem 5.3.1 and Corollary 5.3.2, however, extend this result and give
the first known (and optimal) EL , lower bound for generalized selectivity-like classes.

Theorem 5.3.1 SPARSEN S(2) N P-mc(2) Z EL.,.

Proof. Fori> 1, definet(i) & 22" Wwhere £(0) L2, and let T, £ £t for k > 0,
and T £ |J,.,Ti Let EE be defined as |, DTIME[22"]. We will construct a set B
suchthat (8) B C T, (b) B € EE, (c) |[BN Tyl| < 1 for each k > 0, and (d) B ¢ EL,.
Note that it follows from (a), (b), and (c) that B is a sparse set in S(2). Indeed, any input
to the S(2)-selector that isnot in T isnot in B by (a). If al inputsthat arein T arein the
same Ty then, by (c), the S(2)-promise is never satisfied, and the selector may output an
arbitrary input. If the inputs that are in T fall in more than one Ty, then for al inputs of
length smaller than the maximum length, it can be decided by brute force whether or not
they belong to B—thisis possible, as B € EE and the Ty are triple-exponentially spaced.
From these comments, the action of the S(2)-selector is clear.

Clearly, B dso isin P-mc(k) for each k > 3 by Theorem 5.2.12. But since S(2) and
P-mc(2) are incomparable, we still must argue that B € P-mc(2). Again, this follows
from (a), (b), and (c), since for any fixed two inputs, u and v, if they are of different
lengths, then the smaller one can be solved by brute force; and if they have the samelength,
then it isimpossible by (c) that (xg(w), xs(v)) = (1,1). Inany case, one out of the four
possibilitiesfor the membership of uwandv in B can be excludedin polynomial time. Hence,
B € P-mc(2).

For proving (d), wewill construct B suchthat NP® ¢ coNPB®SAT (which clearly implies
that NPV™* ¢ NPB®SAT). Define

Lg (0" (3x: x| = n) [x € B

Clearly, Ly € NP, Let {N;}i>1 be a standard enumeration of all coNP oracle machines
satisfying the condition that the runtime of each N; is independent of the oracle and each
machineisrepeated infinitely oftenin the enumeration. Let p; be the polynomial bound on
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the runtime of N;. The set B a Uizo B; is constructed in stages. In stage i, at most one
string of length n; will be added to B, and B; ; will have previously been set to the content
of B up to stage i. Initially, B = ) and no = 0. Stagei > Oisasfollows: Let n; bethe

smallest number such that n; > n;_1, n; = t(k) for some k, and 2™ > p;(n;). Simulate
NPT (g,

Case 1. If it rgects (in the sense of coNP, i.e., if it has one or more rejecting computation
paths), then fix some rejecting path and let w; be the smallest string of length n; that
is not queried along this path (note that, by our choice of n;, such a string wy, if
needed, must always exist), and set B; := B; 1 U {wjy}.

Case2: If O™ e L(NP®%T) then set B; := B; ;.

Case 3. If the simulation of N; on input 0™t fails to be completed in double exponential
(say, 21992™ steps) time (for example, because N; is hugein size relative to n,), then
abort the simulation and set B; := B;_;.

This completes the construction of stage i. Since we have chosen an enumeration such
that the same machine as N; appears infinitely often and as the n; are strictly increasing,
it is clear that for only afinite number of the {N;};> that are the same machine as N; can
Case 3 occur (and thus N, either directly or via one of its clones, is diagonalized against
eventually). Note that the construction meets requirements (a), (b), and (c) and shows
Lp # L(NP®ST) for any i > 1. O

Corollary 5.3.2 coSPARSE N coS(2) Z EL,.
Theorem 5.3.3  EL, isnot closed under intersection, union, exclusive-or, or nxor.

Proof (Sketch).  We sketch just theidea of the proof. Using the technique of [HJ] (to be
applied also in some proofs of Section 5.4), it isnot hard to prove that the set B constructed
in the above proof can berepresentedas B = A; N A, for P-selectivesets A; and A,. More
precisely, let

A
A;

{x] (3w € B) [[x| = w| A x <jec W1},
{x[(Fw e B) [x| = w| A w < xI}.

s I
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Since B € EE and istriple-exponentially spaced, we have from an argument similar to that
in the proof of Lemma5.4.5 (see[HJ]) that A;, A, € P-Sel C EL,. On the other hand, we
have seenin the previous proof that B = A; N A, isnot in EL,. Similarly, if we define

G
C2

£ (x| (3w e B) x| = w| A x <iex Wi},
£ {x|(3w e B) [x| = Wl A x <j W1},

wehaveB = C; A Co,and Cq, C, € P-Sel C EL,. Thus, EL, isnot closed under intersection
or exclusive-or. Since EL, is closed under complementation, it must also fail to be closed
under union and nxor. O

The proof of the above result also establishesthe following corollary.
Corollary 5.3.4 [HJ] P-Sel isnot closed under intersection, union, exclusive-or, or nxor.

Theorem 5.3.5 below establishes that, in terms of extended lowness, the join operator
can lower complexity. At first glance, this might seem paradoxical. After all, every
set that reduces to a set A or B also reduces to A @ B, and thus, one might think that
A @ B must be at least as hard as A and B, as most complexity lower bounds (e.g., NP-
hardness) are defined in terms of reductions. However, extended |lowness measures the
complexity of a set’s internal organization, and thus Theorem 5.3.5 is not paradoxical.
Rather, Theorem 5.3.5 highlights the orthogonality of “complexity via reductions’ and
“complexity via non-extended-lowness.” Indeed, note Corollary 5.3.6, which was first
observed in [AH92]. Lemma5.3.8 will be used in the upcoming proof of Theorem 5.3.5.

Theorem5.35 (JA,B)[A¢EL, ABZEL, AN A®B € EL,.
Corollary 5.3.6 [AH92] EL, isnot closed under <P -reductions.

In contrast, every level of the low hierarchy within NP is clearly closed under <P -
reductions. Thus, the low hierarchy analog of Theorem 5.3.5 isfalse, and even the slightly
stronger fact below can be proven.

Fact53.7 (Vk>0)(VA,B)[(A¢Low, V B¢ Low) = A& B ¢ Lowyl.

Proof. AssumeA®B € Low,. Sinceforall setsAandB,A <P A@BandB <P A@B,
the closure of Lowy under <P -reductionsimplies that both A and B arein Low. O
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Lemma5.3.8 If Fisasparse set and censusy € FPF®AT then F € EL..

Proof. Let L € NP viaNPOMs N; and Ny, i.e, L = L(NI™)). Let q(n) bea
polynomia bounding the length of all queries that can be asked in the run of NE(ND on
inputs of length n. Below we describe an NPOM N with oracle F & SAT:

Oninput x, x| = n, N first computes census: (0') for each relevant lengthi < q(mn),
and then guesses all sparse sets up to length q(n). Knowing the exact census of F, N can
use the F part of its oracle to verify whether the guess for F<9(™) js correct, and rejects on
al incorrect paths. On the correct path, N uses itself, the SAT part of its oracle, and the
correctly guessed set F<9(™ to simulate the computation of NE(NE) on input x.

Clearly, L(NF®SAT) = L. Thus, NP¥*" C NPF®SAT j e, F € EL,. O

Proof of Theorem 535. A £ UisoAi and B & Ui>o Bi are constructed in stages.
In order to show A ¢ EL, and B ¢ _ELZ it suffices to ensure in the construction that
NP* ¢ coNPA®AT and NP® ¢ coNPB®SAT. As in the proof of Theorem 5.3.1, define
function t inductively by t(0) & 2 and (i) £ 22 fori > 1, and let {Ni}i1 be our
enumeration of all coNP oracle machines having the property that the runtime of each N;
is independent of the oracle and each machine appears infinitely often in the enumeration.
Define

La = {00 (F > 1) [i=(0,j) A AN D] > 1]},

- i{ot(i) [(FH>1)H= (1)) A|BnZWH| > 1.

Clearly, Ly € NP* and Ly € NP®. In stagei of the construction, at most one string of
length t(i) will be added to A and at most one string of length t(i) will be added to B to

(1) ensure L(N{®T) £ Ly if i = (0,5) (or LINJ*®T) £ Ly if i = (1,5)), and to
(2) encode an easy to find string into A if 1 = (1,j) (or into B if i = (0,j)) indicating
whether or not some string has been added to B (or to A) in (1).

Let A;_; and B;_; be the content of A and B prior to stagei. Initially, let Ay = Bo = 0.
Stage i isasfollows: First assumei = (0,j) for somej > 1. If it is the case that no

path of N7*-*#S*T(0tV) can query all stringsin £tV — {04V} and N***%7(0tV) cannot

query any string of length t(i + 1) (otherwise, just skip this stage—we will argue later
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. . . . . Ai_1DSAT . i .
that the diagonalization still works properly), then smulate Nj** oninput 0t®), If it

rglects (in the sense of coNR i.e,, if it has one or more rejecting computation paths), then
fix some rejecting path and let w; be the smallest string in £t — {04V} that is not queried
along this path, and set A; := A;_1 U {w;} and B; := B;_; U {0}, Otherwise (i.e,, if
0V € LN 1)) then set A; := Ay 1 and B; := B; 1. Thecaseof i = (1,j) is
analogous: just exchange A and B. This completes the construction of stagei.

Since each machine N; appears infinitely often in our enumeration and as the t(i) are
strictly increasing, it is clear that for only a finite number of the N;,, N, ... that are the
same machine as N; can it happen that stage i, must be skipped (in order to ensure that
wy,, If needed to diagonalize against N;, , indeed exists, or that the construction stages do
not interfere with each other), and thus each machine N; is diagonalized against eventualy.
This proves that A ¢ EL, and B ¢ EL,. Now observe that A @ B is sparse and that
censusags € FPAB. Indeed,

censusaes(0™) = 2(||A N {0,00,...,0~ || + |IBN{0,00,...,0" |

Thus, by Lemma5.3.8, A & B € EL,. a

One of the most interesting open questions related to the topic of this section is whether
the join operator also can raise complexity in terms of extended lowness (that is, whether
there exist sets A and B suchthat A € EL, and B € EL,, andyet A & B ¢ EL, for, e.g.,
k = 2), or whether the second level of the extended low hierarchy is (and more generally,
whether all levels of the hierarchy are) closed under join.

5.4 AnExtended Selectivity Hierarchy Capturing Boolean
Closures of P-selective Sets

Hemaspaandra and Jiang [HJ] noted that the class P-Sel is closed under exactly those
Boolean connectivesthat are either compl etely degenerate or almost-compl etely degenerate.
In particular, P-Sel is not closed under intersection or union, and is not even closed under
marked union (join). Thisraises the question of how complex, e.g., the intersection of two
P-selective setsis. Also, isthe class of unions of two P-selective sets more or |ess complex
than the class of intersections of two P-selective sets? Theorem 5.4.7 establishes that, in
termsof P-mc classes, unionsand intersections of setsin P-Sel areindistinguishable (though
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they both are different from exclusive-or). However, we will note as Theorem 5.4.8 that
the GC hierarchy (defined below) does distinguish between these classes, thus capturing
the closures of P-Sel under certain Boolean connectives more tightly.

Definition 5.4.1 Letgs, g2, and gz bethresholdfunctions. DefineGC(g;(n), g2(n), gz(n))
to be the class of all sets L for which there exists a polynomial-time computabl e function f
such that for eachn > 1 and any distinct input stringsys, ... , Yn,

1 f(yy, ..., Yn) C{ys, ..., yntand||f(ys,... ,un)|| < g2(n), and
2. [LN{ys, ..., unll] = g1(n) = |ILNf(yg, ..., un)|| > ga(n).

Remark 5.4.2  For constant thresholds b, ¢, d, we can equivaently (i.e., without chang-
ing the class) requireinthe definitionthat the selector f foraset L € GC(b, ¢, d) onall input
sets of size at least ¢ must output exactly c strings. Thisis true because if f outputs fewer
than c strings, we can define anew selector f' that outputs all strings output by f and addi-
tionally ||f|| — c arbitrary input strings not output by f, and f’ is still aGC(b, ¢, d)-selector
for L. Thiswill be useful in the proof of Lemma5.4.13.

The GC classes generalize the S classes of Section 5.2, and as before, we aso con-
sider fair-GC classes by additionally requiring the “fair condition.” Let GCH denote
Um.,kZl GC(i,j, k). Theinterna structure of GCH will be analyzed in Theorem 5.4.14 on
page 87. First we note below that the largest nontrivial GC class,  fair-GC(|% |, [ 3], 1),
and thus all of GCH, is contained in the P-mc hierarchy.

Theorem 54.3  fair-GC(| %], [%],1) € P-mc(poly).

Proof. LetL € fair-GC(|3],[%],1) viaselector f. Fix any distinct inputs x1, ... ,Xn
suchthatn > (max{|x4], ... ,|xn|})? DefineaP-mc(n?) function g asfollows: g simulates
f(x1,...,%xn) and outputs a 0 at each position corresponding to an output string of f, and
outputs a “1” anywhere else. Note that if all the strings having a “1” in the output of g
indeed arein L, then so must be at least one of the outputs of f, as the “fair condition” is

met and [|{x1,... ,x.} N L|| > 3. Thus, (x1(x1),...,xt(xx)) # g(x1,...,%n), and we
have L € P-mc(poly) viag. O

“Inthischapter, theterm“nontrivial” hasadifferent meaning thanin Chapter 3. Here, any classC C B(Z*)
of setsis said to be nontrivial if C contains infinite sets, but not all sets of strings over X. For example, the
classfair-GC([ 31, [5],1) equalsB(Z*) if n isodd, and is therefore called trivial.
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Lemma5.4.4 [BvHT93] Let A € P-SelandV C X*. The P-selector f for A induces a
total order <¢ onV suchthat (Vx,y € V)[x %ty & (x€ A = yecA)]®

The following lemma (proven in [HJ]) will be useful in some diagonalization proofs of
this section. Asin[HJ], define 1(0) 9 2 and pn(i+1) & 224 for each i >0,

Re LHIAEN A pk) <i<p(k+ 1)),
and the following two classes of languages:®
ciL{A CIN|(Vj > 0) [RyNA =0 A (Vx,y € Ryj11) [x <y AxeA) = yeAll}
CLACINI(Y>0)[RyNA=0A (Vx,y € Royp1) [(x<y Ay €eA) = xeAllL
Lemmab545 [H)] CiNECP-SdandC,NEC P-Sd.

Remark 54.6 1. We will apply Lemma 5.4.5 in a dlightly more general form in the
proof of Theorem 5.4.7 below. That is, in the definition of C; and C,, the underlying
ordering of the elementsin the regions Ry, need not be the standard |exicographical
order of strings. We may allow any ordering < that respects the lengths of strings
and such that, given two strings, x and y, of the same length, it can be decided in
polynomial timewhether x < y. Also observe that in this technique (of constructing
widely-spaced and complexity-bounded sets that thus are in P-Sel, since smaller
strings can be solved by bruteforce), thereis nothing special about spacing according
to the p-function above and the complexity bound being E. One only needs the
spacing to be at least aswide asv(0) = 2 and v(i + 1) = 2t0®) for each i > 0, if
the complexity bound is DTIME[t(n)] (asin the proof of Theorem 5.3.3).

2. To accomplish the diagonalizations in this section, we need our enumeration of FP
functions to satisfy a technical requirement. Fix an enumeration of all polynomial-
time transducers {T:}i>1 having the property that each transducer appears infinitely
ofteninthelist. That is, if T = T; (here, equality refers to the actual program) for
some i, then thereis an infinite set ] of distinct integers such that for eachj € J, we

8For any x andy in V, definex <¢ y ifandonly if (Fug,... , w)x=ws Ay=ux A (Vi:1<i<

k — 1) [f(ui, wit1) = uipall.
SWe will implicitly use the standard correspondence between £* and IN.
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have T = T;. For each k > 1, let f, denote the function computed by Ty. In the
diagonalizations below, it is enough to diagonalize for al k against some Ty such
that T, = Ty, i.€., both compute fy.. In particular, for keeping thesetsL.; and L, (to be
defined in the upcoming proofs of Theorems 5.4.7 and 5.4.8) in E, we will construct
L; and L, such that for al stages j of the construction and for any set of inputs
X C Ry, the transducer computing f;(X) runs in time less than 2max{xI:xeX} (j g
the simulation of T; oninput X isaborted if it failsto be completed in thistime bound,
and the construction of L; and L, proceeds to the next stage). The diagonalizationis
still correct, since for each T; there is a number b; (depending only on T;) such that
for each k > by, if T; = Ty, then for Ty, we will properly diagonalize—and thus T; is
implicitly diagonalized against.

3. Foreachj > O0and k < ||Ryj41]], et x; 0, . .. , X; x denote the strings corresponding to
the first k + 1 numbersin region Ry (in the standard correspondence between
and IN). This notation is used in the diagonalization proofs of this section.

Theorem 54.7 1. P-Sel A P-Sd C P-mc(3), yet P-Sel A P-Sel € P-mc(2).
2. P-Sd V P-Sd C P-mc(3), yet P-Sel vV P-Sel Z P-mc(2).
3. P-Sd A P-Sel ¢ P-mc(3) and P-Sel A P-Sel ¢ P-mc(3).

Proof. 1. & 2. Let A € P-Sel viaf and B € P-Sel viag, and let < and <4 be the orders
induced by f and g, respectively. Fix any inputsx;, x,, x3 suchthat x; <¢ x, <¢ x3. If fand
g “agree” onany two of thesestrings, i.e., thereexist i,j € {1, 2, 3} withi < j andx; <4 x;,
then define a P-mc(3) function h for A N B to output a“1” at positioni and a0 at position
j. Otherwise (i.e., if x3 <4 X2 <4 x1), define h(x1, x2, x3) 2 101. Ineach case, we have
(xanB (X1), XanB (X2), XAanB(X3)) # h(x1,%2,x3). A similar construction worksfor A U B
if we define h(xq, xo, X3) 2 010if X3 <g X2 =g X1, and as above in the other cases. This
proves P-Sel /A P-Sel C P-mc(3) and P-Sel vV P-Sel C P-mc(3).

For proving the diagonalizations, recall from Remark 5.4.6 thet x; o, . .. , x; x denotethe
smallest k 4+ 1 numbersin region Ry1. Define Ly = Ujso Laj and Lo = Uj>o L2, Where

L. 3Jier
1j = 2j+1 .
J " (5(x5.0,%51) € {10,11) A i > x5.0)

(fj(xj,O,xj,l) € {OO, 01} /\ i Z Xj,l) V } .
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df

£5(%5,0, X 00,10} A i <x;0)V
Lz)j:{ieRM (5.0, %,4) € (00,10} A i < x50) }

(fJ (Xj,0>xj,l) € {01, 11} A1 S Xj,l)

Clearly, by the above remark about the construction of L; and L,, wehavel; € C; N E and
L, € CoNE. Thus by Lemmab5.4.5,1; and L, arein P-Sel. Supposing L; N L, € P-mc(2)
viaf;, for somejo, we have fj,(x;, .0, X;,.1) € {0, 1}? such that

(XLlﬂLz (on,O) ) XLlﬂLz(xjo,l)) 7é fjo(XjO,O) xio,l) .

However, in each of the four cases for the membership of x;,0 and x;,1 in Ly N Ly,
this is by definition of L, and L, exactly what f;, claims is impossible. Therefore,
P-Sel A\ P-Sel ¢ P-mc(2). Furthermore, since P-Sel is closed under complementation,
L1, L, € P-Sel. Now assume P-Sel VV P-Sel € P-mc(2). Then, LiUL, =L;NLyisin
P-mc(2), and since P-mc(2) is closed under complementation, we have L; N L, € P-mc(2),
acontradiction. Hence, P-Sel vV P-Sel ¢ P-mc(2).

3. Let Ly £ Jp o Luy, where Ly isthe set of all i € Ry such that
1. (f5(x5,0,%5,1,%;,2) € {100,101, 111} A i > x;,) Or

2. (f;5(%50,%,1,%,2) =01L A i>x54) Or

3. (fj(x5,0,%5,1,%;,2) € {001,110} A\ i > x;2).

Thus, L; € C;NE, and by Lemma5.4.5, ; € P-Sel. For defining L,, we assume the
following re-ordering of the elementsin R4 for eachj > 0: x;1 < %52 < %50 < x;,3 and
Xjs < Xjs41 1f andonly if x; ¢ < x; 511 for s > 3. For any stringsx andy, wewritex <y
if x <y orx=uy. Now define L, £ U;>o L2, where Ly isthe set of all 1 € Ry such
that

1. (fj(ijo,XLl,Xj,z) =110 A 1 j ijo) or
2. (fj(Xj)o,ijl,ijz) - {010, 101} A1 < Xj,l) or
3. (fj(xj,O,Xj,l,Xj,Z) = 100 /\ 1 j Xj‘z).

By Remark 5.4.6, L, € P-Sel. Note that for each j > 0, the set L; N Ry IS empty
if fj(Xj)o,val,ijz) € {OOO, 010}, and the set LN R2j+1 is empty if fj(Xj‘o,ijl,vaz)
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is in {000,001,011,111}. Now suppose L;AL, € P-mc(3) via fj, for some jo, i.e,
f50 (X50.05 Xjo.1) Xjo.2) € {0, 1} such that

(XL1aL, (%50,0), XLiaL, (X50,1), XL14L, (X50,2)) 7 T56(X56,05 X0, 15 Xj0,2) -

However, in each of the eight cases for the membership of x;, o, xj,.1, @nd x;, 2 in L1AL,
this is by definition of L, and L, exactly what f;, claims is impossible. Therefore,
P-Sel A P-Sel  P-mc¢(3). Since L1 AL, = L,AL, and L, € P-Sd, this also implies
that P-Sel A P-Sel ¢ P-mc(3). 0

Notethat Theorem 5.4.7 does not contradict Ogihara sresultin[Ogi94] that RY._., (P-Sel)
is contained in P-mc(2), since we consider the union and intersection of two possibly
different setsin P-Sel, whereas the two queriesin a <b_,,-reduction are asked to the same
set in P-Sel. Clearly, if P-Sel were closed under join, then we indeed would have a
contradiction. However, P-Sel is not closed under join [HJ].

Theorem 5.4.8 1°
1. Foreachk > 2, @« (P-Sel) C GC(1,k, 1), but @ (P-Sel) € SHUGC(1,k — 1,1).
2. Foreachk > 2,V (P-Sdl) C GC(1,k, 1), but Vi (P-Sel)  SHUGC(1,k—1,1).

3. P-Sd A P-Sed ¢ GC(1,2,1), but for each integer-valued FP function k(0™)
satisfying 1 < k(0") <n, P-Sel A\ P-Sel C GC([ 51, k(OM), 1.1

4. P-Sel op P-Sel ¢ fair-GC(1,n—1,1)forope {A, A, A}

Proof. 1. & 2. LetL = A1 @ --- ® Ay, where A; € P-Sa via selector functions s;
fori € {1,...,k}. Let any inputs x4,...,x, be given, each having the form ia for
somei € {1,...,k}and a € X*. For each 1, play a knock-out tournament among all
strings a for which ia belongs to the inputs, where we say a; beats a; if a; <, a;. Let
wy, ..., W, bethe winners of the k tournaments. Define a GC(1, k, 1)-selector for L to
output {Iwy, ... ,kwy}. Clearly, at least one of these strings must bein L if at |east one of
theinputsisin L. The proof of Vy(P-Sdl) C GC(1, k, 1) issimilar.

1ONote that some parts of this theorem extend Hemaspaandra and Jiang's results in [HJ], and also Rao’s
observation that P-Sel op P-Sel ¢ SH for any Boolean operation op chosen from {A\, V, A} [Ra094].
"Note that there is still a gap between the upper and the lower bound.
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We only prove that P-Sel vV P-Sel ¢ SH by uniformly diagonalizing against all FP
functionsand all levelsof SH. Define

Lli U Ll,(j,m) and L, i U I—2,()’,m))

(3,m) :j=0 A m<||Rgj 14| (,m) :j20AmM<||Rej 14|

wherefor eachj > 0and m < ||Ryj41]

, thesets L 5 my ad L, 5 ) are defined as follows:

Ligm = {1€Raypali>F(x50,...,%5m) A fi(X50-.0,%m) €{X50,- ., X5,m}}5

L2‘<jym) = {1 c R2j+1 | i< fj(Xj7o, . ,Xj,m) A fj(Xj7o, . )Xj,m) c {ijo, . )Xj,m}}-

Clearly, [, e CtNEand L, € C; NE. Thus, by Lemma5.4.5, L, L, € P-Sel. Assume
P-Sel vV P-Sel C SH, and in particular, L; U L, € S(my) viaf,. If mg < ||Ry,44], then
this contradicts the fact that f; (x; 0, . . . , Xj,m,) SEl€ctsastring not in Ly U L, though mg
of theinputsarein L; U Ly. If mg > ||Ryj,+1||, then by our assumption that each transducer
T; appearsinfinitely often in the enumeration (see Remark 5.4.6), thereis an index j; such
that mo < ||Ry;,+1|| @nd T;, computes f;,, and thus f;, isimplicitly diagonalized against.

3. Let k(O™) be afunction asin the theorem. Let L = A N B for sets A and B, where
A € P-Sd viaf and B € P-Sd viag. We will defineaGC([ﬁ},k(O“),1)-selector 3
for L. Givenn elements, rename them with respect to the linear order induced by f, i.e.,
we have x; <¢ xo <¢ --- <¢ x. Letk a k(O™). Now let h be the unique permutation of
{1,... ,n}suchthatforeachi,j € {1,... ,n}, h(i) =jifandonly if x; isthejthelementin
the linear ordering of {x1, ... ,x,}induced by g. Partitiontheset {1, ... ,n}into k regions
of at most [{] elements:

R & {(1—1) F—H+1,(1—1) F—JHLF—J} for1<1<k—1,and

df n n
Rk) & {(k—l) [d +1,(k—1) [d Y2,... ,n}.
Define s(x1, ... ,%n) a4 {ay,...ax}, where a; a xm() and m(l) isthe m € R(1) such

that h(m) is maximum. Thus, for each region R(1), a; isthe “most likely” element of its
region to belong to B. Consider the permutation matrix of h with elements (i, h(i)), for
1 <1i<n. Letcay bethe“cutpoint” for A and let cg bethe “cutpoint” for B, i.e.,

{xi[i<calCA and xi[i>ca) CA;
{xni | M) <cg} €B and  {xnu |h(i) > cs} C B.
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Define

df . .
= {xili<cal Ain = {xi|i>ca)
df

Bot = {xn@lh(i) < csl Bin = {Xn@|h(i) > cs}

Since Ajn N Bin € A N B, it remainsto show that if the promise [|{x,... ,x,J N L|| > [3]
is met, then at least one of the outputs a; of s isin Aj, N Bj,. First observethat for each 1,
if i > ca holdsfor eachi € R(1) and R(1) contains an index i such that h(ig) > cg, then
a; € Ain N Bin. On the other hand, if ca “cuts’ aregion R(1p), then in the worst case we
have ai, = (lo — 1)[¢] +1andca = (lo — 1)[§] + 2, and thus a;, € Aj, and at most
[+]—1elementsof A;, canhaveanindexinR(lo). However, if [[{x1,... ,x.JNL|| > [F],
then there must exist an 1; with 1; > 1y such that for each i € R(1;) it holdsthat i > ca,
and thus, a;, € Aj, N Bjn. ThisprovesL € GC([ ], k,1) vias.

The proof of P-Sel A\ P-Sel & GC(1,2,1) issimilar asin Part 4.

4. Weonly prove P-Sel A\ P-Sel ¢ fair-GC(1,n — 1,1). Define

L), (3 > 0) [i € Ry1andi > wj for thesmallest string |
. Wj € Ryjqq such that f;(Roj41) € Roja — {wj]] ’

Lol (3j > 0) [i € Ry41 and i < wj for the smallest string
’ Wj € Ryjp1 suchthat f5(Rpj41) € Rajy1 — {wsll

Asbefore, Ly, L, € P-Sel. Assumethereisafair-GC(1,n — 1, 1)-selector f;, for Ly N L.
First observe that the “fair condition” is satisfied if f;, has all strings from Ry; 1 as inputs,
since ||Ry, 1] = 227" — (2jo + 1) and the length of the largest string in Ry, 1 is
a most 2#2o*1). For fair-GC(1,n — 1, 1)-selector f;,, there must exist a smallest string
Wj, € Ryjo+1 suchthat fj;(Raj11) € Rajo+1 — {Wj, ), and thus, {wj, } = LiN L2 N Ry;11. This
would contradict f;,(Ry;,+1) not selecting wy,. O

Statement 3 of the above theorem immediately gives the first part of Corollary 5.4.9.
Note that, even though this GC(y/n, v/n, 1) upper bound on P-Sel A\ P-Sel may not be
strong enough to prove the second part of the corollary, the proof of this second part does
easily follow from the P-Sel A\ P-Sel C P-mc(3) result of Theorem 5.4.7 via Ogihara's
result that the assumption NP C P-mc(3) impliesthe collapse of P = NP [Ogi94].

Corollary 549 1. P-Sd A P-Sel C GC(y/n,/n,1).
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2. NPC P-Sd N\ P-Sel = P=NP.

Therest of this section studiestheinternal structure of GCH. We start with determining
for which parameters b, ¢, and d the class GC(b, c, d) is “nontrivial.” Throughout this
chapter, aclassC of setsissaid to benontrivial if C # B(X*) and C containsnot only finite
sets. Recall that wy 1, ... , Wy s arethe lexicographically smallest s length e(i) strings, for
i> 0and s < 2¢® (function e(i) is defined in Section 5.2). The proof of Lemma 5.4.10
below can be found in the appendix on page 93.

Lemma5.4.10 Letb,c,de NTwithd <candd <b. Then,
1. (3A)[A € GC(b,c,d) A [|A]| = o0], and
2. (3B) [B ¢ GC(b,c,d) A ||B]| = ool.
Theorem5.4.11 Letb,c,d € IN*.
1. Every setin GC(b, ¢, d) isfiniteif andonly if d > bord > c.

2. 1fd<bandd < c, then GC(b, ¢, d) is nontrivial.

Proof. If d > cord > b, then by Definition 5.4.1, every set in GC(b, c, d) is finite.
On the other hand, if d < b and d < ¢, then by Lemma 5.4.10.1, there is an infinite set
in GC(b, c,d). Hence, every set in GC(b, c,d) isfiniteif andonly if d > bor d > c.
Furthermore, if d < band d < c, then GC(b, c, d) # PB(Z*) by Lemma5.4.10.2. O

Now we turn to the relationships between the nontrivia classeswithin GCH. Given any
parameters b, ¢, d and i, j, k, we seek to determine which of GC(b, ¢, d) and GC(4, j, k)
is contained in the other class (and if thisinclusion is strict), or whether they are mutually
incomparable. For classes A and B, let A < B denote that .4 and B are incomparable, i.e.,
A Z Band B Z A. Theorem 5.4.14 will establish these relations for almost all the cases
and is proven by making extensive use of the Inclusion Lemma and the Diagonalization
Lemmabelow. The proofs of Lemmas 5.4.12 and 5.4.13 can be found in the appendix on
pages 93 and 94, respectively.

Lemma5.4.12 (Inclusion Lemma) Letb,c,d € INt and 1, m,n € IN be given such
that each GC class below is nontrivial. Then,
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1. GC(b,c,c) = S(b,c).
2. GC(b,c,d+n) C GC(b+1,c+ m,d).
3. Ifl>nandm > n, then GC(b,c,c) C GC(b+ 1,¢c + m,c+n).

4. Ifl<mandm < n,thenGC(b+1,c+m,d+n) C GC(b, c,d).

Lemma5.4.13 (Diagonalization Lemma) Let b,c,d € IN" and I, m,n,q € IN be
given such that each GC class below is nontrivial. Then,

1 If1>n+1,then (3L) [L € GC(b + 1,c +m,d +n) — GC(b, ¢ + q, ).
2. 1fm>n+1then(3L)[L € GC(b +1,c+m,d+n)—GC(b + q,c,d)].

. If(n>1+1orn>m+1),then(3L) [L € GC(b,c,d)—GC(b+1,c+m,d+mn)].

Theorem5.4.14 Letb,c,d € INT and 1,j,k € IN be given such that each GC class
below isnontrivia. Then,

1. GC(b,c,d+k) Cc GC(b+1i,c+j,d)ifi>1orj>1ork > 1
2. GC(b,c+j,d+ k) c GC(b+1,c,d)if1<j<k.
3. GC(b,c+j,d+ k) =< GC(b+1i,c,d)ifj >k > 1.
4. GC(b+1i,¢c,d+ k) C GC(b,c+j,d)if 1<i<k.
5. GC(b+1,c,d+ k) x GC(b,c +7j,d) ifi > k> 1.
6. GC(b+1,c,d)xGC(b,c+j,d)ifi>1andj > 1.

7. GC(b+1i,c+j,d+k) c GC(b,c,d)if l<i<kandl<j<klor(l<j<k
and1<i< k).

8. GC(b+1i,c+j,d+%k) =GC(b,c,d)ifi=j=kandc=d.

9. GC(b+1i,c+j,d+ k) =xGC(b,c,d)ifl<i<k<jorl<j<k<i.
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Proof.  The proof is done by repeatedly applying Lemma 5.4.12 and Lemma 5.4.13.
Unless otherwise specified, 1, m, and n in thelemmas correspond to i, j, and k in this proof.

1. Theinclusionis clear (see Lemma 5.4.12.2). For the strictness of the inclusion, we
have to consider three cases. If i > 1, then by Lemma 5.4.13.1 withn = q = 0, there
existsaset L € GC(b +1i,c+j,d) — GC(b,c,d). By Lemma5.4.12.2 withl = m = 0,
L ¢ GC(b,c,d+ k). Thecaseof j > 1istreated similar, using Lemma 5.4.13.2 instead
of Lemma5.4.13.1. Findly, if k > 1, then by Lemma5.4.13.3 with1 = m = 0, we have
L € GC(b,c,d)—GC(b, c,d+k). ByLemma5.4.12.2withn = 0,L € GC(b+1,c+j, d).

2. ApplyingLemma5.4.12.4with1 = Oand thenLemma5.4.12.2withm =n = 0, we
have GC(b,c+j,d+ k) C GC(b,c,d) C GC(b+1,c,d). By Lemma5.4.13.3with1 =0
(i.,e,n > 1), thereexistsaset L € GC(b,c,d) — GC(b,c +j,d+ k). By Lemma5.4.12.2
withm=n=0,L € GC(b +1,c,d).

3. “¢Z” followsfrom Lemma5.4.13.2withq =iand1 = 0. “2” followsasin Part 2.

4. Applying Lemma5.4.12.4 with m = 0 and then Lemma 5.4.12.2 with1 = n = 0,
we have GC(b +1i,c,d + k) C GC(b,c,d) € GC(b,c + m,d). The strictness of the
inclusion follows as in Part 2, where Lemma 5.4.13.3 is applied with m = 0 instead of
1=0.

5. “¢” follows from Lemma 5.4.13.1 with g = j and m = 0. “2” holds by
Lemmab5.4.13.3withm =0 (i.e, n > 1) and Lemma5.4.12.2 withl =n = 0.

6. “Z” holds, as by Lemma5.4.13.1 with g = j and m = n = 0, there exists a set
L € GC(b+1,c,d)— GC(b,c+j,d). “2” similarly follows from Lemma 5.4.13.2 with
g=iandl=n=0.

7. By Lemmab5.4.12.4, GC(b +1i,c +j,d+ k) C GC(b,c, d). By Lemma5.4.13.3, if
n > lorn > m, thenthereexistsaset L € GC(b,c,d) — GC(b+1,c +j,d + k).

8. The equality followsfrom Lemma5.4.12.3 and Lemma5.4.12.4.

9. Leti < k < j. Then, by Lemma 5.4.13.2 with q = O, there existsa set L €
GC(b +1i,c+j,d+ k) — GC(b, ¢, d). Conversely, by Lemma5.4.13.3, there exists a set
L € GC(b,c,d)—GC(b+1i,c+j,d+k). Ifj < k < 1, theincomparability of GC(b, c, d)
and GC(b +1,c +j, d + k) similarly follows from Lemma5.4.13.1 and Lemma 5.4.13.3.

O

Note that Theorem 5.4.14 does not settle all possible relations between the GC classes.
That is, the relation between GC(b,c,d) and GC(b + 1,c + j,d + k) is left open for
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A / strict inclusion

----- incomparability

P-Sel =5(1) = (1,1,1) =(22,2) = (333) = ...

Figure 5.3: Relations between all nontrivial classes GC(b, c,d) with1 < b,c,d < 3.
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thecaseof (k < iandk < jandc # d). Figure 5.3 shows the relations amongst all
nontrivial classes GC(b, ¢, d) with1 < b, c, d < 3, asthey are provenin Theorem 5.4.14.
For instance, S(2) = GC(3, 2,2) ¢ GC(3,3,2) holds by the first part of the theorem with
b=3,c=d=2,1=k=0,andj = 1. Thoserelationsnot established by Theorem5.4.14
are marked by “+” and are proven separately as Theorem 5.4.15 below. The “A” indicates
that, while the inclusion holds by Lemma5.4.12.4, the strictness of the inclusion for these
cases has been observed by A. Nickelsen.

Theorem 5.4.15 1. [Nic94] GC(2,3,2) ¢ GC(1,2,1).
2. GC(3,3,2) 0 GC(1,2,1).

3. GC(3,3,2) c GC(2,2,1).

Proof. Both inclusions (GC(2,3,2) € GC(1,2,1) and GC(3,3,2) C GC(2,2,1))
follow from Lemma5.4.12.4 with1 = m = n = 1. We now provide the diagonalizations.

1. For proving GC(1,2,1) ¢ GC(2,3,2), we will defineaset L = J,;L: such
that for each i, Ly C W4 and if f;(Wi4) C Wi and ||[fi(Wi4)|| = 3, then we make
sure that ||L;|| = 2 and ||L; N f;(W;4)|| = 1. Thisensuresthat for noi > 1 canf; bea
GC(2, 3, 2)-selector for L. For example, this can be accomplished by defining L; asfollows:

Xt(Wig, ..., wig) = 0101 if fi(Wia) ={wi1, Wiz, wigl,
xt(Wig, ..., wig) =1010 if f;(Wia) = {wi1, Wiz, widl,
XL(Wit, ... ,Wia) =1100 if f;(Wia) = {wi1, Wiz, wial,
Xt(Wity ..., Wwig) =1100 if fi(Wia) = {wi2, Wiz wial.

Notethat if f;(W; 4) outputsastring not in W; 4 or the number of output strings s different
from 3, then (by Definition 5.4.1 and Remark 5.4.2) f; immediately disqualifiesfor being a
GC(2, 3,2)-selector for L (and we set L; = () in thiscase). Thus, L ¢ GC(2, 3,2). Onthe
other hand, L € GC(1, 2, 1) can be seen asfollows: Givenany set of inputs X with || X|| > 2,
we can w.|.0.g. assume that X C [ J i>1 Wi since smaller strings can be solved by brute
force, we may even assume that X C W; 4 for some j. Suppose further that ||L N X|| > 1.
Define g(X) £ X if IX|| = 2; and if ||X|| > 2, define g(X) to output {w; 1, w; 4} if
{w;1,wj 4} C X, and to output {wj 2, wj 3} otherwise. Since ||L N {wj 1, w;j4}|| = 1 and
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IL N {wj 2, w; 3}|| = 1 holdsin each of the four cases above, it followsthat ||L N g(X)|| > 1.
Hence, L € GC(1,2,1) viag.

2. For proving GC(1,2,1) Z GC(3,3,2), L is defined as | J;.., Li, where L; C Wi,
and if fi(Wis) € Wis and ||fi(Wis)|| = 3, then we make sure that IIL]| = 3 and
ILi N fi(Wys)|| = 1. Thisensuresthat for noi > 1 can f; be a GC(3, 3, 2)-selector for L.
For example, this can be achieved by defining L; as follows:

Wi 1, Wy 2, Wi,3}>

Xr(Wigy ..., wig) fi(Wis) ={
XL(Wig, ..., wis) = 10101 if fi(Wis) = {wi1, wi2, widl,
XL(Wig, ..., wis) = 10110 if fi(Wis) = {wi1, wi2, wis},
(Wi, ... ,wis) = 01101 if f;(Wis) ={wi1, wis, Wia},
Xt(Wig, ... ,wis) =01011 if f;(Wis) = {wi1, Wiz, Wigs),
xt(Wig, ..., wis) = 01101 if f;(Wis) = {wi1, Wi, Wish,
Xt(Wig, ..., wis) = 10101 if f(Wis) = {wiz, Wiz, widl,
Xt(Wig, ..., wis) = 11010 if f;(Wis) = {wiz, Wiz, wis),
xt(Wig, ..., wis) = 10110 if f;(Wis) = {wi2, wig, wis},
( )=1 fi(Wis) ={

XL\Wi1,... ,Wis Wi 3, Wy 4, Wi,S}-

P

As argued above, this showsthat L ¢ GC(3, 3,2). For proving that L € GC(1,2,1), let a
set X of inputs be given and suppose w.l.0.g. that || X|| > 3and X C W; s for somej. Note
that for each choice of X, at least one of {wj 1, wj 2}, {wWj 2, wj 3}, {Wj.3, W; 4}, {Wj .4, Wj 5},
or {wj 5, w; 1} must be contained in X. On the other hand, each of {w; 1, w; 2}, {wj 2, wj 3},
{w; 3, Wj 4}, {Wj 4, w; s}, and {w; 5, w; 1} has (by construction of L) at least one string in
common with L if L; is not set to the empty set. From these comments the action of the
GC(1, 2, 1)-selector is clear.
For proving GC(3, 3,2) Z GC(1,2,1), defineaset L C |J,., Wi sasfollows:

XL(Wi,l)Wi,Z)WiS) =100 if fi(Wi,3) = {Wi,Z)Wi,3})
XL(Wi,l)Wi,Z)WiS) =010 if fi(Wi,3) = {Wi,l)wi,3})
XL(W1,1>W1,2>W1,3) =001 if fi(Wi,a) = {Wi,bwi,z}-

Sincein each case |[L N W, 3| = 1 but L N f;(W;3) = 0, weclearly have L ¢ GC(1,2,1).
On the other hand, L is easily seen to be in GC(3, 3, 2) via a selector that first solves all
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“small” inputs (i.e., those strings not of maximum length) by brute force and then outputs
two small members of L (and one arbitrary input) if those can be found, or three arbitrary
inputs if no more than one small member of L is found by brute force. Note that the
GC(3, 3, 2)-promiseis not satisfied in the latter case.

Part 3 followsfrom Part 2, as GC(1,2,1) c GC(2,2,1). O



Appendix A
Some Proofs from Chapter 5

Proof of Lemma 5.4.10.
1 Let A =2X* Givenn distinct stringsyy, ... ,yn, define

f(yl, e

a | {yy,...,yob ifn>c
>yn): .
{yl)"')yn} ifn<c.

Clearly, f € FP, f(ys,...,yn) C A,and||f(ys, ..., )| < c. If [[{ys,... ,yn}NA| > b,
then n > b, and thus we have ||f(ys,...,yn) NA|| = c > dif n > ¢, and we have
If(ys, ..., Un) NA||=n >1b > dif n < c. By Definition5.4.1, A € GC(b, c, d).

2. We will define B £ (J..,B; such that for noi withb+c —d+1 < 200
can f; be a GC(b,c, d)-selector_for B. By our assumption about the enumeration of
FP functions (Remark 5.4.6), this suffices. For eachiwithb+c—d +1 > 2¢0, sat
B, £ 0. Foreachisuchthatb+c—d-+1 < 260, |et F; and W; be shorthands for the sets
fiWit, ..o, Wivse—a+1) 8d{wi1, ... , Wivic_at1), respectively, andletwsj,, ..., wij, ,
be thefirst d — 1 stringsin F; (if ||Fi|| > d). W.l.o.g., assume F; C W; and ||Fi|| < c (if
not, f; automatically disqualifies for being a GC(b, c, d)-selector). If d < ||F;|, then set
Bi & {wijy, ..., Wij, 0 U(Ws—F). If d > |||, then set B; £ W,. Thus, either we
have |[W:NB|| > (d—1)+ ((b+c—d+1)—c) =band|F, NB| < d, or we have
IWinB||=b+c—d+1>band|F,NB| < d. Hence, B ¢ GC(b,c, d). O

Proof of Lemma5.4.12.
1. & 2. Immediate from the definitions of GC and S classes.

3. Letl>nandm > n. By Parts 1 and 2 of this lemma and by Theorem 5.2.3, we

93
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have

GC(b,c,c) = S(b,c)=S(b+n,c+n)=GC(b+n,c+n,c+mn)
C GC(b+1l,c+m,c+mn).

4. Supposem <l <nandL € GC(b+1,c+m,d+n) viaf € FP. Asinthe proof of
Theorem 5.2.3, let finitely many stringszy, .. . , zp421 1, €ch belonging to L, be hardcoded
into the transducer computing function g defined below. Giveninputs Y = {yy, ..., Y}
choose (if possible) L strings z;, . .. , zi, € Y, and define

(Y)g{ Y Ulziy, oo z) = gy e w) if 2,02 @Y exist

f(Y)—{vi,...,vim} otherwise,
where {u4,...,u} contains all z-strings output by f, say there are h with h < 1, the
remaining l—h u-stringsare arbitrary y-strings of the output of f, and similarly, vy, ... , v,

are arbitrary output strings of f. Clearly, g € FPand g(Y) C Y. Moreover, ||g(Y)] <
c+m—1<cifzy,...,z; ¢Y exist; otherwise, wetrivialy have | g(Y)| < c. Notethat
if zi,, ...,z & Ydonotexist, then ||[YN{zy,...,zoia1}]| > b+1 Thus,if [LNY]|| > b,
then either |[LN (YU {z,...,zy})|| > b+ 1limplies|[LNng(Y)| >d+n—1>d, or
ILNY| >b+limplies||LNg(Y)||> d+n—m > d. Thisestablishesthat m <1< n
impliesGC(b + 1,c + m,d + n) C GC(b,c,d). By symmetry, we similarly obtain that
l<m<nimpliesGC(b+1,c+m,d+n) C GC(b,c, d) if weexchangel and m inthe
aboveargument. Since(m <l<norl<m<n)ifandonlyif (1 <nandm < n), the
proof is complete. a

Proof of Lemma 5.4.13.

1. The diagonalization part of the proof is analogous to the proof of Lemma5.4.10.2,
the only difference being that here we have ¢ + q instead of c. Also, it will be useful to
require that any (potential) selector f; for some setin GC(b, c + q, d) hasthe property that
for any set of inputs W with ||[W|| > ¢ + q, ||fi(W)]|| isexactly ¢ + q. By Remark 5.4.2,
this results in an equivalent definition of the GC class and can w.l.0.g. be assumed. The
construction of set L = J,, L; isasfollows. For eachiwith2¢) < b+c+q—d+ 1,
st L; £ ¢. For each i such that 2°¥ > b +c¢ — d + 1, let F; and W; be shorthands
for the sets f; (Wi 1, ..., Wibtctrq—d+1) and{wi1,... , Wipicirq_a+1), respectively, and let
Wij, ..., Wij, , bethefirst d — 1 stringsin F; (if ||Fi|| > d). If ||[Fi]| =c+q (> d) and
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F, C Wy thenset Ly £ {wyy,, ..., wiy, JU(W;i—F;); otherwise, set Ly £ W;. Asbefore,
L& GC(b,c+q,d).

Now we provethat L € GC(b + 1,c + m,d +n) if | > n. Given any distinct input
strings yy, . . . , Y, suppose they are lexicographically ordered (i.e., Y1 <jex - <iex Yt),
each y; isin W; for somej, and yx <je - - - <je Yt areal strings of maximum length for
somek with1 < k < t. DefineaGC(b + 1,c + m, d + n)-selector f for L asfollows:

1. Fori € {1,...,k — 1}, decide by brute force whether y; isin L. Let v denote
I{us, ... ,yk_1y N L||. Output min{v,d 4+ n} stringsin L. If v > d + n then halt,
otherwisegoto 2.

2. 1ft > k+ (d+n—v)—1, then output yx, ... , Ykt (a+n-v)—1; Otherwise, output
YU, ..+, YUt-

Clearly, f € FP, f(y1,...,Ut) € {y1,...,ys), and since GC(b + 1l,¢ + m,d + n) is
non-trivial, we have:

||f(91» )yt)” SV‘}‘(d—{—n—V) §C+m

Now weprovethat if ||{us, ... ,uJNL|| > b+1,then||g(ys, ... ,yd)NL|| > d+n. Leti
besuchthat e(i) isthelengthof yy, ... ,y¢. Clearly, if ||F;|| # c+ q, then by construction of
L and f, either f outputs d +n stringsinL, or LN{y1, ... ,y¢t = f(ys,...,ye). Similarly,
if f haltsin step 1 because of v > d + n, then we are done. So suppose v < d + n,
Iy1,...,ydNL|>b+1,and||F|| =c+q > d. Recal that wy;, , isthe (d — 1)st
string in F;. Define D a Uk, .-y N {wya, ..., Wy, ). By construction of L, we have
wig, ..., Wy, €L soD CL. Thatis,

{u, - Yo € L (A.1)

since|[{yx,...,yJNL||>b+1—-v,wehavet—(k—1) >b+1—v>d+n—v,and
thust > k+ (d+n—v) — 1. Thisimplies:

Uk, -+« yUkt(dinv)-1) € f(uz, ..., ue). (A.2)

Thus,if d+n—v < ||D||, weobtainfrom (A.1) that {yx, . . . , Yk+(d+n—v)-1) € L, whichin
turnimplieswith (A.2) that ||[LNf(ya,...,yd)]| > v+(d+n—v) = d+n. Soitremainsto
showthat d+n—v < ||D||. Observethatb+1 < |{y1, ... ,ygNL|| < v+||D||+b—d+1,
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snce ||W;—F| =(b+c+qgq—d+1)—(c+q) =b—d+ 1 (here we need that
IFill = ¢ + q rather than ||Fi|| < ¢ + q for f; to be a GC(b, c + q, d)-selector). Thus,
v+||D||+b—d+1> b+1. Bytheassumptionthatl > n+1, weobtaind+n—v < ||D||.

Parts 2 and 3 can be proven by a similar technique. O
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